Code de GrayLe code de Gray, également appelé code Gray ou code binaire réfléchi, est un type de codage binaire permettant de ne modifier qu'un seul bit à la fois quand un nombre est augmenté d'une unité. Cette propriété est importante pour plusieurs applications. Le nom du code vient de l'ingénieur américain Frank Gray qui publia un brevet sur ce code en 1953, mais le code lui-même est plus ancien. Le code de Gray est un codage binaire, c'est-à-dire une fonction qui associe à chaque nombre une représentation binaire.
Code cycliqueEn mathématiques et en informatique, un code cyclique est un code correcteur linéaire. Ce type de code possède non seulement la capacité de détecter les erreurs, mais aussi de les corriger sous réserve d'altérations modérées. Les mathématiques sous-jacentes se fondent sur la théorie des corps finis, et en particulier les extensions de Galois ainsi que les polynômes. Les codes cycliques, encore appelés contrôles de redondance cyclique (CRC), correspondent à une large famille de codes, on peut citer par exemple le code de Hamming, les codes BCH ou le code de Reed-Solomon.
Error correction codeIn computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Code préfixeUn code préfixe (ou code instantané) est un code ayant la particularité de ne posséder aucun mot du code ayant pour préfixe un autre mot du code. Autrement dit, aucun mot du code (ou symbole) d'un code préfixe ne peut se prolonger pour donner un autre mot du code (ou symbole). C'est une propriété souvent recherchée pour les codes à longueur variable, afin de pouvoir les décoder lorsque plusieurs symboles sont concaténés les uns aux autres sans qu'il soit nécessaire d'utiliser des séparateurs (les séparateurs rendent préfixes des codes non préfixes).
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Conseil (informatique théorique)En théorie de la complexité, un conseil est une entrée supplémentaire passée à une machine de Turing qui dépend de la taille de l'entrée, afin d'aider la machine à reconnaître un langage. Cette notion est introduite par Richard Karp et Richard J. Lipton en 1982. Étant donnés une fonction et une classe de complexité , la classe est l'ensemble des langages tels qu'il existe un langage et une suite de conseils de taille tels que pour toute entrée de taille , si et seulement si .
Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.