Covariance functionIn probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z(x) on a domain D, a covariance function C(x, y) gives the covariance of the values of the random field at the two locations x and y: The same C(x, y) is called the autocovariance function in two instances: in time series (to denote exactly the same concept except that x and y refer to locations in time rather than in space), and in multivariate random fields (to refer to the covariance of a variable with itself, as opposed to the cross covariance between two different variables at different locations, Cov(Z(x1), Y(x2))).
Base canoniqueEn mathématiques, plus précisément en algèbre linéaire, certains espaces vectoriels possèdent une base qualifiée de canonique ; il s'agit d'une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de R, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. En revanche sur un espace vectoriel quelconque, la notion n'a pas de sens : il n'y a pas de choix de base privilégiée.
Théorie du transportEn mathématiques et en économie, la théorie du transport est le nom donné à l'étude du transfert optimal de matière et à l'allocation optimale de ressources. Le problème a été formalisé par le mathématicien français Gaspard Monge en 1781. D'importants développements ont été réalisés dans ce domaine pendant la Seconde Guerre mondiale par le mathématicien et économiste russe Léonid Kantorovitch. Par conséquent, le problème dans sa forme actuelle est parfois baptisé problème (du transport) de Monge-Kantorovitch.
Cartographie statistique paramétriqueLa cartographie statistique paramétrique (en statistical parametric mapping ou SPM) est une méthode d'analyse statistique employée en . Le terme SPM est à éviter pour désigner la méthode générale car il fait référence au logiciel développé par le Wellcome Department of Imaging Neuroscience de l'University College de Londres pour effectuer ce genre d'analyses. Ce logiciel prépare les images (TEP, IRMf, TEMP, EEG ou MEG) pour des analyses statistiques de chaque voxel d'une image.
Théorie des twisteursLa théorie des twisteurs, introduite par Roger Penrose dans les années 1970, ou plus précisément de « particules » se déplaçant à la vitesse de la lumière. Pour décrire un point de l'espace temps, la théorie imagine tous les rayons lumineux qui parviennent à ce point. Un paramètre doit par ailleurs être ajouté aux rayons lumineux : une hélicité. Finalement l'espace considéré et qui encode l'espace-temps, est de .
Coordonnées canoniquesEn mathématiques et en mécanique classique, les coordonnées canoniques sont des ensembles de coordonnées sur l'espace des phases qui peuvent être utilisées pour décrire un système physique à un moment donné dans le temps. Les coordonnées canoniques sont utilisées dans la formulation hamiltonienne de la mécanique classique. Un concept étroitement lié apparaît également en mécanique quantique ; voir le théorème de Stone-von Neumann et les relations de commutation canoniques pour plus de détails.
AutocovarianceLa fonction d'autocovariance d'un processus stochastique permet de caractériser les dépendances linéaires existant au sein de ce processus. Si est un processus stationnaire au sens faible alors et pour n'importe quels entiers naturels . Dans ce cas et il suffit alors de définir les autocovariances par la fonction qui à tout associe . La fonction d'autocovariance apparaît alors comme la covariance de ce processus avec une version décalée de lui-même. On appelle l'autocovariance d'ordre .