Cristal temporelUn cristal temporel est une structure périodique dans le temps et l'espace. Il étend l'idée de cristal dans la dimension temporelle, autrefois considéré comme impossible. L'idée d'une telle structure a été proposée par Frank Wilczek en 2012. Selon ce dernier, il est possible de concevoir une structure composée d'un groupe de particules se déplaçant et retournant périodiquement à leur état d'origine, qui formeraient un « cristal temporel ».
Peigne de fréquences optiquesvignette|Schéma représentant les caractéristiques du spectre associé à un train d'impulsions à modes bloqués, c'est-à-dire un peigne de fréquences. En pointillés rouge est représenté l'enveloppe du spectre. En bleu est représenté les composantes du spectre (les dents du peigne).|300x300px Un peigne de fréquences est la structure spectrale d'une source optique spécifique. Celle-ci est composée d'une succession de fréquences discrètes régulièrement espacées, aussi appelées les raies ou « dents » du peigne.
Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
Énergie du point zéroL'énergie du point zéro est la plus faible énergie possible qu'un système physique quantique puisse avoir ; cela correspond à son énergie quand il est dans son état fondamental, c'est-à-dire lorsque toute autre forme d'énergie a été retirée. Tous les systèmes mécaniques quantiques subissent des fluctuations même quand ils sont à leur état fondamental (auquel est associée une énergie du point zéro), une conséquence de leur nature ondulatoire.
Minimisation d'un automate fini déterministevignette|upright=1.5|Dans cet automate, tous les états sont accessibles, les états c, d et e sont indistinguables, ainsi que les états a et b. vignette|upright=1.5|Automate minimal équivalent. Les états indistinguables sont regroupés en un seul état. En informatique théorique, et plus particulièrement en théorie des automates, la minimisation d'un automate fini déterministe est l'opération qui consiste à transformer un automate fini déterministe donné en un automate fini déterministe ayant le nombre minimal d'états et qui reconnaît le même langage rationnel.
Automate finithumb|upright=2|Fig. 1 : Une hiérarchie d'automates. Un automate fini ou automate avec un nombre fini d'états (en anglais finite-state automaton ou finite state machine ou FSM) est un modèle mathématique de calcul, utilisé dans de nombreuses circonstances, allant de la conception de programmes informatiques et de circuits en logique séquentielle aux applications dans des protocoles de communication, en passant par le contrôle des processus, la linguistique et même la biologie.
Espace symétriqueEn mathématiques, et plus spécifiquement en géométrie différentielle, un espace symétrique est une variété, espace courbe sur lequel on peut définir une généralisation convenable de la notion de symétrie centrale. La définition précise de la notion d'espace symétrique dépend du type de structure dont on munit la variété. Le plus couramment, on entend par espace symétrique une variété munie d'une métrique riemannienne pour laquelle l'application de symétrie le long des géodésiques constitue une isométrie.
Hermitian symmetric spaceIn mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space.
Objet exceptionnelDe nombreuses branches des mathématiques étudient des objets d'un certain type et démontrent à leur sujet un . Ces classifications produisent en général des suites infinies d’objets, et un nombre fini d’exceptions n’appartenant à aucune de ces suites, et connues sous le nom d’objets exceptionnels. Ces objets jouent souvent un rôle important dans le développement de la théorie, et les objets exceptionnels de divers domaines ont fréquemment des relations les uns avec les autres.
Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .