Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Constraint satisfactionIn artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Os oraculaireLes os oraculaires (甲骨片 pinyin: jiǎgǔpiàn) sont des morceaux d'os ou de carapace de tortue employés dans la divination royale à partir du milieu de la dynastie Shang jusqu'au début de la dynastie Zhou dans la Chine ancienne, et présentant souvent des inscriptions dans le style calligraphique chinois appelé écriture ossécaille. thumb|right|Os oraculaire Les os oraculaires de la dynastie Shang ont été exhumés au en Chine, et sont vendus en tant qu’os de dragon dans les marchés traditionnels chinois, utilisés à la fois entiers ou broyés pour guérir de divers affections, y compris les blessures au couteau.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Pythievignette|redresse|John Collier, Prêtresse de Delphes, 1891, musée national d'Australie-Méridionale (Adélaïde) Dans la religion grecque antique, la Pythie (en grec ancien ), également appelée Pythonisse, est l'oracle du temple d'Apollon à Delphes. Elle tire son nom de « Python », le serpent légendaire qui vivait dans une grotte à l'emplacement du site actuel du sanctuaire, et qui terrorisait les habitants de la région autour du mont Parnasse avant d'être tué par Apollon, ou bien de « Pytho », le nom archaïque de la ville de Delphes.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Résolution de problèmevignette|Résolution d'un problème mathématique. La résolution de problème est le processus d'identification puis de mise en œuvre d'une solution à un problème. Analyse de cause racine (ACR, Root cause analysis) : cette démarche part du constat qu'il est plus judicieux de traiter les causes d'un problème que d'en traiter les symptômes immédiats. Puisqu'analyser les causes d'un problème permet d'en déterminer une solution définitive, et donc, empêcher qu'il ne se reproduise de nouveau.
Creative Problem SolvingLe Creative Problem Solving (CPS) est une méthode créative de résolution de problème élaborée par Alex Osborn et . Elle allie à la fois un processus structuré, des techniques, et des rôles attribués aux différents intervenants dans ce processus. En 1942, le publicitaire Alex Osborn décrit dans son livre How To Think Up, puis dans Applied Imagination en 1953, le brainstorming (« l’attaque d’un problème dans un style commando ») qui est à l’origine du Creative Problem Solving.
Satisfiability modulo theoriesEn informatique et en logique mathématique, un problème de satisfiabilité modulo des théories (SMT) est un problème de décision pour des formules de logique du premier ordre avec égalité (sans quantificateurs), combinées à des théories dans lesquelles sont exprimées certains symboles de prédicat et/ou certaines fonctions. Des exemples de théories incluent la théorie des nombres réels, la théorie de l’arithmétique linéaire, des théories de diverses structures de données comme les listes, les tableaux ou les tableaux de bits, ainsi que des combinaisons de celles-ci.