Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Asymptotic theory (statistics)In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞. In practice, a limit evaluation is considered to be approximately valid for large finite sample sizes too. Most statistical problems begin with a dataset of size n.
Numerical cognitionNumerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.
Méthode des moments généraliséeEn statistique et en économétrie, la méthode des moments généralisée (en anglais generalized method of moments ou GMM) est une méthode générique pour estimer les paramètres d'un modèle statistique qui s'appuie sur un certain nombre de conditions sur les moments d'un modèle. Habituellement, cette méthode est utilisée dans un contexte de modèle semi-paramétrique, où le paramètre étudié est de dimension finie, alors que la forme complète de la fonction de distribution des données peut ne pas être connue (de ce fait, l'estimation par maximum de vraisemblance n'est pas applicable).
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Fonction elliptiquevignette|Fonctions elliptiques lemniscates et ellipse. En mathématiques, et plus particulièrement en analyse complexe, une fonction elliptique est, grossièrement parlant, une fonction définie sur le plan complexe qui est doublement périodique (périodique dans deux directions). Elle peut être vue comme analogue à une fonction trigonométrique (qui a une seule période).
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
Graphe de scèneUn graphe de scène est une structure générale de données utilisée communément par les outils de modélisation 3D et les jeux vidéo actuels. Le graphe de scène structure de manière logique la représentation spatiale d'une scène graphique. La définition d'un graphe de scène est floue, puisque les programmeurs qui implémentent les graphes de scènes dans les applications, plus particulièrement dans l'industrie du jeu vidéo, reprennent les principes généraux et les adaptent à leurs besoins particuliers.