Module semi-simplethumb|Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes.
Corps algébriquement closEn mathématiques, un corps commutatif K est dit algébriquement clos si tout polynôme de degré supérieur ou égal à un, à coefficients dans K, admet (au moins) une racine dans K. Autrement dit, c'est un corps qui n'a pas d'extension algébrique propre. Si K est algébriquement clos, tout polynôme non constant à coefficients dans K est scindé dans K, c'est-à-dire produit de polynômes du premier degré. Le nombre de ses racines dans K (comptées avec leur ordre de multiplicité) est donc exactement égal à son degré.
Isomorphism classIn mathematics, an isomorphism class is a collection of mathematical objects isomorphic to each other. Isomorphism classes are often defined as the exact identity of the elements of the set is considered irrelevant, and the properties of the structure of the mathematical object are studied. Examples of this are ordinals and graphs. However, there are circumstances in which the isomorphism class of an object conceals vital internal information about it; consider these examples: The associative algebras consisting of coquaternions and 2 × 2 real matrices are isomorphic as rings.
Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Groupe réductifEn mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Corps quasi-algébriquement closEn mathématiques, un corps K est dit quasi-algébriquement clos si tout polynôme homogène P sur K non constant possède un zéro non trivial dès que le nombre de ses variables est strictement supérieur à son degré, autrement dit : si pour tout polynôme P à coefficients dans K, homogène, non constant, en les variables X1, ..., XN et de degré d < N, il existe un zéro non trivial de P sur K, c'est-à-dire des éléments x1, ..., xN de K non tous nuls tels que P(x1, ..., xN) = 0.
Focal subgroup theoremIn abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to . The focal subgroup theorem relates the ideas of transfer and fusion such as described in . Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.
Indice d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, si H est un sous-groupe d'un groupe G, l'indice du sous-groupe H dans G est le nombre de copies distinctes de H que l'on obtient en multipliant à gauche par un élément de G, soit le nombre des xH quand x parcourt G (on peut choisir en fait indifféremment de multiplier à gauche ou à droite). Les classes xH formant une partition, et la multiplication à gauche dans un groupe par un élément donné étant bijective, le produit de l'indice du sous-groupe H dans G par l'ordre de H égale l'ordre de G, ce dont on déduit, pour un groupe fini, le théorème de Lagrange.
Pseudo algebraically closed fieldIn mathematics, a field is pseudo algebraically closed if it satisfies certain properties which hold for algebraically closed fields. The concept was introduced by James Ax in 1967. A field K is pseudo algebraically closed (usually abbreviated by PAC) if one of the following equivalent conditions holds: Each absolutely irreducible variety defined over has a -rational point. For each absolutely irreducible polynomial with and for each nonzero there exists such that and . Each absolutely irreducible polynomial has infinitely many -rational points.