Forme quadratiquethumb|L'annulation d'une forme quadratique donne le cône de lumière de la relativité restreinte, son signe fait la différence entre les événements accessibles ou inaccessibles dans l'espace-temps. En mathématiques, une forme quadratique est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Les formes quadratiques d'une, deux et trois variables sont données respectivement par les formules suivantes (a,b,c,d,e,f désignant des coefficients) : L'archétype de forme quadratique est la forme x + y + z sur R, qui définit la structure euclidienne et dont la racine carrée permet de calculer la norme d'un vecteur.
Robot navigationRobot localization denotes the robot's ability to establish its own position and orientation within the frame of reference. Path planning is effectively an extension of localisation, in that it requires the determination of the robot's current position and a position of a goal location, both within the same frame of reference or coordinates. Map building can be in the shape of a metric map or any notation describing locations in the robot frame of reference. For any mobile device, the ability to navigate in its environment is important.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Équation linéaireUne équation à coefficients réels ou complexes est dite linéaire quand elle peut être présentée sous la forme ax = b ou, de manière équivalente ax – b = 0, où x est l'inconnue, a et b sont deux nombres donnés. Si a est différent de zéro, la seule solution est le nombre x = b/a. Plus généralement, une équation est dite linéaire lorsqu'elle se présente sous la forme u(x) = b, où u est une application linéaire entre deux espaces vectoriels E et F, b étant un vecteur donné de F. On recherche l'inconnue x dans E.
Robotiquethumb|upright=1.5|Nao, un robot humanoïde. thumb|upright=1.5|Des robots industriels au travail dans une usine. La robotique est l'ensemble des techniques permettant la conception et la réalisation de machines automatiques ou de robots. L'ATILF donne la définition suivante du robot : « il effectue, grâce à un système de commande automatique à base de microprocesseur, une tâche précise pour laquelle il a été conçu dans le domaine industriel, scientifique, militaire ou domestique ».
Robotvignette|Atlas (2013), robot androïde de Boston Dynamics vignette|Bras manipulateurs dans un laboratoire (2009) vignette|NAO (2006), robot humanoïde éducatif d'Aldebaran Robotics vignette|DER1 (2005), un actroïde d'accueil vignette|Roomba (2002), un robot ménager Un robot est un dispositif mécatronique (alliant mécanique, électronique et informatique) conçu pour accomplir automatiquement des tâches imitant ou reproduisant, dans un domaine précis, des actions humaines.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Self-reconfiguring modular robotModular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.