Binary erasure channelIn coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit correctly, or with some probability receives a message that the bit was not received ("erased") . A binary erasure channel with erasure probability is a channel with binary input, ternary output, and probability of erasure . That is, let be the transmitted random variable with alphabet .
Codage de HuffmanLe codage de Huffman est un algorithme de compression de données sans perte. Le codage de Huffman utilise un code à longueur variable pour représenter un symbole de la source (par exemple un caractère dans un fichier). Le code est déterminé à partir d'une estimation des probabilités d'apparition des symboles de source, un code court étant associé aux symboles de source les plus fréquents. Un code de Huffman est optimal au sens de la plus courte longueur pour un codage par symbole, et une distribution de probabilité connue.
Code de HammingUn code de Hamming est un code correcteur linéaire. Il permet la détection et la correction automatique d'une erreur si elle ne porte que sur une lettre du message. Un code de Hamming est parfait : pour une longueur de code donnée il n'existe pas d'autre code plus compact ayant la même capacité de correction. En ce sens son rendement est maximal. Il existe une famille de codes de Hamming ; le plus célèbre et le plus simple après le code de répétition binaire de dimension trois et de longueur un est sans doute le code binaire de paramètres [7,4,3].
Concatenated error correction codeIn coding theory, concatenated codes form a class of error-correcting codes that are derived by combining an inner code and an outer code. They were conceived in 1966 by Dave Forney as a solution to the problem of finding a code that has both exponentially decreasing error probability with increasing block length and polynomial-time decoding complexity. Concatenated codes became widely used in space communications in the 1970s.
Codage entropiqueLe codage entropique (ou codage statistique à longueur variable) est une méthode de codage de source sans pertes, dont le but est de transformer la représentation d'une source de données pour sa compression ou sa transmission sur un canal de communication. Les principaux types de codage entropique sont le codage de Huffman et le codage arithmétique. Le codage entropique utilise des statistiques sur la source pour construire un code, c'est-à-dire une application qui associe à une partie de la source un mot de code, dont la longueur dépend des propriétés statistiques de la source.
Convolutional codeIn telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.
Tornado codeIn coding theory, Tornado codes are a class of erasure codes that support error correction. Tornado codes require a constant C more redundant blocks than the more data-efficient Reed–Solomon erasure codes, but are much faster to generate and can fix erasures faster. Software-based implementations of tornado codes are about 100 times faster on small lengths and about 10,000 times faster on larger lengths than Reed–Solomon erasure codes. Since the introduction of Tornado codes, many other similar erasure codes have emerged, most notably Online codes, LT codes and Raptor codes.
Canal de communication (théorie de l'information)vignette En théorie de l'information, un canal de communication ou canal de transmission est un support (physique ou non) permettant la transmission d'une certaine quantité d'information, depuis une source (ou émetteur) vers un destinataire (ou récepteur). Souvent, le canal altère l'information transmise, par exemple en ajoutant un bruit aléatoire. La quantité d'information qu'un canal de communication peut transporter est limitée : on parle de capacité du canal.
Orthogonal frequency-division multiplexingL’OFDM (orthogonal frequency-division multiplexing) est un procédé de codage de signaux numériques par répartition en fréquences orthogonales sous forme de multiples sous-porteuses. Cette technique permet de lutter contre les canaux sélectifs en fréquence en permettant une égalisation de faible complexité. Ces canaux se manifestent notamment en présence de trajets multiples et sont d'autant plus pénalisants que le débit de transmission est élevé.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.