Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Commande prédictiveLa commande prédictive (ou compensation ou correction anticipatrice) est une technique de commande avancée de l’automatique. Elle a pour objectif de commander des systèmes industriels complexes. Le principe de cette technique est d'utiliser un modèle dynamique du processus à l'intérieur du contrôleur en temps réel afin d'anticiper le futur comportement du procédé. La commande prédictive fait partie des techniques de contrôle à modèle interne (IMC: Internal Model Controler).
Closed-loop controllerA closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.
Single Input Single OutputIn control engineering, a single-input and single-output (SISO) system is a simple single-variable control system with one input and one output. In radio, it is the use of only one antenna both in the transmitter and receiver. SISO systems are typically less complex than multiple-input multiple-output (MIMO) systems. Usually, it is also easier to make an order of magnitude or trending predictions "on the fly" or "back of the envelope". MIMO systems have too many interactions for most of us to trace through them quickly, thoroughly, and effectively in our heads.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Robot autonomevignette|exemple de robot autonome de type rover Un robot autonome, également appelé simplement autorobot ou autobot, est un robot qui exécute des comportements ou des tâches avec un degré élevé d'autonomie (sans influence extérieure). La robotique autonome est généralement considérée comme un sous-domaine de l'intelligence artificielle, de la robotique et de l'. Les premières versions ont été proposées et démontrées par l'auteur/inventeur David L. Heiserman.
MIMO (télécommunications)Multiple-Input Multiple-Output ou MIMO (« entrées multiples, sorties multiples » en français) est une technique de multiplexage utilisée dans les radars, réseaux sans fil et les réseaux mobiles permettant des transferts de données à plus longue portée et avec un débit plus élevé qu’avec des antennes utilisant la technique SISO (Single-Input Single-Output). Alors que les anciens réseaux Wi-Fi ou les réseaux GSM standards utilisent une seule antenne au niveau de l'émetteur et du récepteur, MIMO utilise plusieurs antennes tant au niveau de l'émetteur (par exemple un routeur) que du récepteur (par exemple un PC portable ou un smartphone).
Circuit en boucle ouverteEn régulation, un système en boucle ouverte ou contrôle ouvert est une forme de contrôle d'un système qui ne prend pas en compte la réponse de ce système (appelée rétroaction, en anglais : feedback). Ce contrôle, simple en principe, est à utiliser avec précaution si le système est naturellement instable. Pour le mettre en place il faut au préalable avoir parfaitement modélisé le système, que la commande soit parfaitement adaptée et qu'il n'y ait aucune perturbation.
Stochastic controlStochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.