Équation de BoltzmannL' équation de Boltzmann ou équation de transport de Boltzmann décrit le comportement statistique d'un système thermodynamique hors état d'équilibre, conçue par Ludwig Boltzmann en 1872. L'exemple classique d'un tel système est un fluide avec des gradients de température dans l'espace provoquant un flux de chaleur des régions les plus chaudes vers les plus froides, par le transport aléatoire mais orienté des particules composant ce fluide.
Chaleur (thermodynamique)vignette|Le Soleil et la Terre constituent un exemple continu de processus de chauffage. Une partie du rayonnement thermique du Soleil frappe et chauffe la Terre. Par rapport au Soleil, la Terre a une température beaucoup plus basse et renvoie donc beaucoup moins de rayonnement thermique au Soleil. La chaleur dans ce processus peut être quantifiée par la quantité nette et la direction (Soleil vers Terre) d'énergie échangée lors du transfert thermique au cours d'une période de temps donnée.
Relativistic heat conductionRelativistic heat conduction refers to the modelling of heat conduction (and similar diffusion processes) in a way compatible with special relativity. In special (and general) relativity, the usual heat equation for non-relativistic heat conduction must be modified, as it leads to faster-than-light signal propagation. Relativistic heat conduction, therefore, encompasses a set of models for heat propagation in continuous media (solids, fluids, gases) that are consistent with relativistic causality, namely the principle that an effect must be within the light-cone associated to its cause.
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.
Écoulement de StokesUn écoulement de Stokes (ou écoulement rampant) caractérise un fluide visqueux qui s'écoule lentement en un lieu étroit ou autour d'un petit objet, dont les effets visqueux dominent alors sur les effets inertiels. On parle parfois de fluide de Stokes par opposition à fluide parfait. Il est en effet régi par une version simplifiée de l'équation de Navier-Stokes, léquation de Stokes, dans laquelle les termes inertiels sont absents.
Phénomène de transfertUn phénomène de transfert (ou phénomène de transport) est un phénomène irréversible durant lequel une grandeur physique est transportée par le biais de molécules. C'est un phénomène transversal présent dans tous les domaines de la science et en ingénierie. Tous les phénomènes de transport ont pour origine l'inhomogénéité d'une grandeur intensive. C'est la tendance spontanée des systèmes physiques et chimiques à rendre uniformes ces grandeurs qui provoquent le transport.
Loi de StokesLa loi de Stokes, nommée en l'honneur de George Stokes (1819 – 1903), est une loi donnant la force de traînée hydrodynamique s'exerçant sur une sphère en déplacement dans un fluide. Si le nombre de Reynolds est très inférieur à 1 (écoulement rampant) et si la sphère est suffisamment loin de tout autre corps, de tout obstacle ou paroi latérale (on considère une paroi éloignée d'au moins dix fois le rayon de la sphère), alors la force de traînée hydrodynamique qui s'exerce sur une sphère de diamètre est : où est la viscosité dynamique du fluide (en ) et le diamètre de la sphère.
Formule de Boltzmannthumb|Sur la tombe de Ludwig Boltzmann En physique statistique, la formule de Boltzmann (1877) définit l'entropie microcanonique d'un système physique à l'équilibre macroscopique, libre d'évoluer à l'échelle microscopique entre micro-états différents. Elle s'écrit : où est la constante de Boltzmann qui est égale à . est appelé le nombre de complexions du système ou nombre de configurations.
Constante de BoltzmannLa constante de Boltzmann k (ou k) a été introduite par Ludwig Boltzmann dans sa définition de l'entropie de 1877. Le système étant à l'équilibre macroscopique, mais libre d'évoluer à l'échelle microscopique entre micro-états différents, son entropie S est donnée par : où la constante k retenue par le CODATA vaut (valeur exacte). La constante des gaz parfaits est liée à la constante de Boltzmann par la relation : (avec (valeur exacte) le nombre d'Avogadro, nombre de particules dans une mole). D'où :.
TempératureLa température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).