Corrélation croiséeLa corrélation croisée est parfois utilisée en statistique pour désigner la covariance des vecteurs aléatoires X et Y, afin de distinguer ce concept de la « covariance » d'un vecteur aléatoire, laquelle est comprise comme étant la matrice de covariance des coordonnées du vecteur. En traitement du signal, la corrélation croisée (aussi appelée covariance croisée) est la mesure de la similitude entre deux signaux.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
CollisionUne collision est un choc direct entre deux objets. Un tel impact transmet une partie de l'énergie et de l'impulsion de l'un des corps au second. Collision élastique Les collisions élastiques, aussi appelées « chocs durs », se caractérisent par leur absence de perte d'énergie et de déformation. Elles sont impossibles à réaliser sauf au niveau atomique. La plupart du temps, on a donc des collisions quasi élastiques. Collision inélastique Les collisions inélastiques sont les collisions les plus fréquentes et surviennent lorsqu'il y a une perte d'énergie lors de la collision.
Corrélation partielleLe coefficient de corrélation partielle, noté ici , permet de connaître la valeur de la corrélation entre deux variables A et B, si la variable C était demeurée constante pour la série d’observations considérées. Dit autrement, le coefficient de corrélation partielle est le coefficient de corrélation totale entre les variables A et B quand on leur a retiré leur meilleure explication linéaire en termes de C. Il est donné par la formule : La démonstration la plus rapide de la formule consiste à s’appuyer sur l’interprétation géométrique de la corrélation (cosinus).
Collision inélastiqueUne collision inélastique est une collision au cours de laquelle l'énergie cinétique des corps qui entrent en collision est totalement ou en partie convertie en énergie interne dans au moins un des corps. Ainsi, l'énergie cinétique n'est pas conservée. La non-conservation de l'énergie cinétique peut dans le cas d'un choc de corps macroscopiques être due à une déformation des deux corps qui se heurtent : la déformation d'une boule de pâte à modeler heurtant une boule de pétanque, par exemple, consomme de l'énergie sous forme de travail.
Hund's rule of maximum multiplicityHund's rule of maximum multiplicity is a rule based on observation of atomic spectra, which is used to predict the ground state of an atom or molecule with one or more open electronic shells. The rule states that for a given electron configuration, the lowest energy term is the one with the greatest value of spin multiplicity. This implies that if two or more orbitals of equal energy are available, electrons will occupy them singly before filling them in pairs.
Tau de KendallEn statistique, le tau de Kendall (ou de Kendall) est une statistique qui mesure l'association entre deux variables. Plus spécifiquement, le tau de Kendall mesure la corrélation de rang entre deux variables. Elle est nommée ainsi en hommage à Maurice Kendall qui en a développé l'idée dans un article de 1938 bien que Gustav Fechner ait proposé une idée similaire appliquée aux séries temporelles dès 1897. Soit un ensemble d'observations des variables jointes et tel que les valeurs des et sont uniques.