RésonanceLa résonance est un phénomène selon lequel certains systèmes physiques (électriques, mécaniques) sont sensibles à certaines fréquences. Un système résonant peut accumuler une énergie, si celle-ci est appliquée sous forme périodique, et proche d'une fréquence dite « fréquence de résonance ». Soumis à une telle excitation, le système va être le siège d'oscillations de plus en plus importantes, jusqu'à atteindre un régime d'équilibre qui dépend des éléments dissipatifs du système, ou bien jusqu'à une rupture d'un composant du système.
Phénoménologie (philosophie)La phénoménologie (du grec , « ce qui apparaît », et , « étude ») est un courant de pensée du fondé par Edmund Husserl dans l'optique de faire de la philosophie une discipline empirique. Elle tire son nom de sa démarche, qui est d'appréhender la réalité telle qu'elle se donne, à travers les phénomènes. Elle fait de la philosophie l'étude systématique et l'analyse de l’expérience vécue et de la conscience comme étant eux-mêmes des phénomènes de la pensée qui se pense elle-même et pense le monde.
MagnétostrictionLa magnétostriction désigne la propriété que possèdent les matériaux ferromagnétiques de se déformer en fonction de l'orientation de leur aimantation, par exemple sous l'influence d'un champ magnétique. Les matériaux ferromagnétiques présentent aussi un effet magnétostrictif inverse, appelé effet magnéto-mécanique, qui se caractérise par la modification de la susceptibilité magnétique, voire de l'aimantation, en présence de contraintes mécaniques dans le matériau.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Bracketing (phenomenology)Bracketing (Einklammerung; also called phenomenological reduction, transcendental reduction or phenomenological epoché) means looking at a situation and refraining from judgement and bias opinions to wholly understand an experience. The preliminary step in the philosophical movement of phenomenology describing an act of suspending judgment about the natural world to instead focus on analysis of experience. Suspending judgement involves stripping away every connotation and assumption made about an object.
Forme d'ondeLa forme d'onde d'un signal est la représentation graphique de l'évolution de l'amplitude instantanée d'une onde physique périodique ou aléatoire en fonction du temps. Il peut s'agir d'une onde mécanique ou d'une onde électromagnétique. La représentation d'une forme d'onde utilise le principe des coordonnées cartésiennes, avec le temps en abscisse et l'amplitude en ordonnée. Une forme d'onde peut être observée avec un oscilloscope à bande passante appropriée lorsqu'il s'agit d'un signal électrique direct ou issu de capteurs.
Stabilité EBSBLa stabilité EBSB est une forme particulière de stabilité des systèmes dynamiques étudiés en automatique, en traitement du signal et plus spécifiquement en électrotechnique. EBSB signifie Entrée Bornée/Sortie Bornée : si un système est stable EBSB, alors pour toute entrée bornée, la sortie du système l’est également. Un système linéaire invariant et à temps continu dont la fonction transfert est rationnelle et strictement propre est stable EBSB si et seulement si sa réponse impulsionnelle est absolument intégrable, i.
Philosophical methodologyIn its most common sense, philosophical methodology is the field of inquiry studying the methods used to do philosophy. But the term can also refer to the methods themselves. It may be understood in a wide sense as the general study of principles used for theory selection, or in a more narrow sense as the study of ways of conducting one's research and theorizing with the goal of acquiring philosophical knowledge.
Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.
Ring of symmetric functionsIn algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group.