Intégrale de GaussEn mathématiques, une intégrale de Gauss est l'intégrale d'une fonction gaussienne sur l'ensemble des réels. Sa valeur est reliée à la constante π par la formule où α est un paramètre réel strictement positif. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale. Cette formule peut être obtenue grâce à une intégrale double et un changement de variable polaire. Sa première démonstration connue est donnée par Pierre-Simon de Laplace.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Conjuguévignette|Représentation géométrique (diagramme d'Argand) de z et de son conjugué z̅ dans le plan complexe. Le conjugué est obtenu par symétrie par l'axe des réels. En mathématiques, le conjugué d'un nombre complexe z est le nombre complexe formé de la même partie réelle que z mais de partie imaginaire opposée. Le conjugué d'un nombre complexe , où a et b sont nombres réels, est noté ou . Dans le plan, le point d'affixe est le symétrique du point d'affixe par rapport à l'axe des abscisses. Le module du conjugué reste inchangé.
Intégrale impropreEn mathématiques, lintégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock).
Fonction elliptique d'AbelEn mathématiques, les fonctions elliptiques d'Abel sont un type particulier de fonctions elliptiques, qui ont été établies par le mathématicien norvégien Niels Henrik Abel. Il publie son article Recherches sur les Fonctions elliptiques dans le Journal de Crelle en 1827 . Il s'agit du premier travail sur les fonctions elliptiques qui a été réellement publié . Les travaux d'Abel sur les fonctions elliptiques ont également influencé les études de Jacobi sur les fonctions elliptiques, dont le livre publié en 1829 Fundamenta nova theoriae functionum ellipticarum est devenu l'ouvrage standard sur les fonctions elliptiques.
Méthodes de calcul d'intégrales de contourEn analyse complexe, lintégration de contour est une technique de calcul d'intégrale le long de chemins sur le plan complexe L'intégration de contour est fortement liée au calculs de résidus, une méthode de calcul utilisée pour évaluer des intégrales curvilignes sur l'axe des réelles, que les outils de la théorie de l'intégration ne permettent pas de calculer par une simple analyse réelle Les méthodes d'intégration de contour incluent : l'intégration directe d'une fonction à valeurs complexes le long d'une c
Potentiel retardéEn physique, on utilise parfois la notion de potentiel d'un champ vectoriel, c'est-à-dire un champ scalaire ou vectoriel, pour décrire les effets d'une quantité physique, comme le champ électrique. Cependant, les effets d'un tel objet ne sont pas immédiats : si on peut négliger la propagation dans de nombreuses applications, on doit, dans d'autres, introduire la notion de potentiels retardés.
Intégrale non élémentaireEn mathématiques, une intégrale non élémentaire est une intégrale qui n'a aucune formule en termes de fonctions élémentaires. L'existence de telles fonctions a été démontrée par Joseph Liouville en 1835. Parmi les intégrales non élémentaires, on peut citer où R est une fonction rationnelle à deux variables, P est une fonction polynomiale de degré 3 ou 4 avec des racines simples, qui donnent les intégrales elliptiques ; qui donne le logarithme intégral ; à l'origine de la loi normale. Théorème de Liouvill