CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
Complexe différentielEn mathématiques, un complexe différentiel est un groupe abélien (voire un module), ou plus généralement un objet d'une catégorie abélienne, muni d'un endomorphisme de carré nul (appelé différentielle ou bord), c'est-à-dire dont l' est contenue dans le noyau. Cette condition permet de définir son homologie, qui constitue un invariant essentiel en topologie algébrique. Un complexe différentiel peut être gradué pour constituer un complexe de chaines ou de cochaines).
Homologie singulièreEn topologie algébrique, l'homologie singulière est une construction qui permet d'associer à un espace topologique X une suite homologique de groupes abéliens libres ou de modules. Cette association est un invariant topologique non complet, c'est-à-dire que si deux espaces sont homéomorphes alors ils ont mêmes groupes d'homologie singulière en chaque degré mais que la réciproque est fausse. Le théorème de Stokes appliqué à des formes fermées donne des intégrales nulles. Cependant, il se fonde sur une hypothèse cruciale de compacité.
Cup-produitEn topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l'. Introduite à l'origine en cohomologie singulière, des constructions analogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du .
Cap-produitEn mathématiques, et plus particulièrement en topologie algébrique, le cap-produit est une opération binaire qui permet d'assembler des chaînes et des cochaînes. Elle a été introduite par Eduard Čech en 1936 et indépendamment par Hassler Whitney en 1938. Soit X un espace topologique et A un anneau. Le cap-produit est une application bilinéaire définie sur les chaines et les cochaines singulières en posant avec et et où est la restriction de l'application simpliciale à la face engendrée par les vecteurs .
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
Cohomologie de ČechLa cohomologie de Čech est une théorie cohomologique, développée à l'origine par le mathématicien Eduard Čech en faisant jouer au nerf d'un recouvrement sur un espace topologique le rôle des simplexes en homologie simpliciale. On peut définir une cohomologie de Čech pour les faisceaux, ou plus généralement pour les objets d'un site, en particulier une catégorie de schémas munie de la topologie de Zariski.
Lie algebra extensionIn the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
Steenrod algebraIn algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod cohomology. For a given prime number , the Steenrod algebra is the graded Hopf algebra over the field of order , consisting of all stable cohomology operations for mod cohomology. It is generated by the Steenrod squares introduced by for , and by the Steenrod reduced th powers introduced in and the Bockstein homomorphism for . The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory.
Cohomology operationIn mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if F is a functor defining a cohomology theory, then a cohomology operation should be a natural transformation from F to itself. Throughout there have been two basic points: the operations can be studied by combinatorial means; and the effect of the operations is to yield an interesting bicommutant theory.