Conjuguévignette|Représentation géométrique (diagramme d'Argand) de z et de son conjugué z̅ dans le plan complexe. Le conjugué est obtenu par symétrie par l'axe des réels. En mathématiques, le conjugué d'un nombre complexe z est le nombre complexe formé de la même partie réelle que z mais de partie imaginaire opposée. Le conjugué d'un nombre complexe , où a et b sont nombres réels, est noté ou . Dans le plan, le point d'affixe est le symétrique du point d'affixe par rapport à l'axe des abscisses. Le module du conjugué reste inchangé.
Espace tangentL'espace tangent en un point p d'une variété différentielle M est un espace vectoriel qui intuitivement est l'ensemble de tous les vecteurs-vitesse possibles d'un « mobile » se déplaçant (sans pouvoir la quitter) dans la variété M quand il est en p. Une façon commune en physique de décrire l'espace tangent est de dire que les vecteurs qu'il contient représentent les différences entre ce point et des points de la variété infiniment proches du premier.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).
Analyse procustéenneEn statistiques, l'analyse procustéenne est une technique pour comparer des formes. Elle est utilisée pour déformer un objet afin de le rendre autant que faire se peut semblable à une référence (potentiellement arbitraire), ne laissant apparaître entre l'objet et la référence que les différences que les transformations autorisées (rotation, translation et mise à l'échelle) n'ont pu gommer. La déformation supprime les différences qui ne sont pas dues à la forme intrinsèque de l'objet (mais par exemple à un biais introduit lors de l'acquisition des données).
Orbital planeThe orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) and of an orbiting celestial body at two different times/points of its orbit. The orbital plane is defined in relation to a reference plane by two parameters: inclination (i) and longitude of the ascending node (Ω).
Espace tangent (géométrie algébrique)En géométrie algébrique, on peut définir la notion d'espace tangent (de Zariski) sans faire (explicitement) de calcul différentiel. C'est en quelque sorte une première approximation de la structure locale du schéma. Soit A un anneau local d'idéal maximal M. Soit le corps résiduel de A. Pour a ∈ A et m, m ∈ M, on remarque que avec M2 le produit d'idéal de M par lui-même. Ainsi le quotient de A-modules est un -espace vectoriel ; on l'appelle espace cotangent et son dual espace tangent de Zariski de . Notons-le .
Dimension topologiqueEn mathématiques, une dimension topologique est une notion destinée à étendre à des espaces topologiques la notion algébrique de dimension d'un espace vectoriel. C'est un invariant topologique, entier ou infini. Les trois principales dimensions topologiques sont les deux dimensions inductives ind et Ind et la dimension de recouvrement dim. Les dimensions Ind et dim coïncident pour tout espace métrisable ; si l'espace est de plus séparable, ses trois dimensions topologiques sont égales.
LexicographieLa lexicographie est la science qui consiste à recenser les mots, les classer, les définir et les illustrer, par des exemples ou des expressions, pour rendre compte de l'ensemble de leurs significations et de leurs acceptions au sein d'une langue, afin de constituer un dictionnaire. Elle se distingue de la lexicologie, de la sémantique et de l'étymologie. Pierre Larousse (1817-1875) mourut avant même de voir son dictionnaire achevé. Alain Rey (1928-2020) dirigea et fut aussi le rédacteur de plusieurs types de dictionnaires dont le Dictionnaire historique de la langue française.