FouléeLa foulée désigne l'enjambée lors de la course à pied. La première phase est un appui au sol de l'un des pieds Elle débute par la réception, généralement sur le talon, en avant du centre de gravité du coureur ; la réception amortit le choc entre le pied et le sol, l'amorti est en partie produit par la flexion du genou à laquelle s'oppose le quadriceps en contraction excentrique.
Marche à piedLa marche est un mode de locomotion naturel chez l'homme. Elle consiste en un déplacement en appui alternatif sur les pieds, en position debout et en ayant toujours au moins un point d'appui en contact avec le sol, sinon il s'agit de course. C'est un des principaux modes de déplacement, qui fait partie des modes dits « fatigants », « doux » ou « actifs », comme des moyens de transport tels que la bicyclette, la trottinette ou le patinage à roulettes, par opposition aux modes de transport motorisés parfois dits « passifs ».
DémarcheLa démarche est le motif du mouvement des membres des animaux pendant leur déplacement. La plupart des animaux utilisent différents types de démarches en fonction de la vitesse, du terrain, des besoins de manœuvrer et de l'efficacité énergétique. Les diagrammes de démarche de Milton Hildebrand sont généralement utilisés par les physiologistes dans l'étude de la locomotion. Il existe différents dispositifs permettant d'étudier les démarches. Parmi les plus anciens on peut citer le fusil photographique d'Étienne-Jules Marey en 1872, puis par Eadweard Muybridge en 1878.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Racine de l'erreur quadratique moyenneLa racine de l'erreur quadratique moyenne (REQM) ou racine de l'écart quadratique moyen (en anglais, root-mean-square error ou RMSE, et root-mean-square deviation ou RMSD) est une mesure fréquemment utilisée des différences entre les valeurs (valeurs d'échantillon ou de population) prédites par un modèle ou estimateur et les valeurs observées (ou vraies valeurs). La REQM représente la racine carrée du deuxième moment d'échantillonnage des différences entre les valeurs prédites et les valeurs observées.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Allure (équitation)Les allures sont, en équitation, les différentes façons que le cheval a de se déplacer. Il existe des allures naturelles, que le cheval pratique lorsqu’il est en liberté, et des allures artificielles qui peuvent lui être inculquées par le biais du dressage. Certaines races de chevaux possèdent naturellement des allures supplémentaires et sont connues sous le nom de chevaux d'allures ou chevaux de marche.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.