Infirmité motrice cérébraleL'infirmité motrice d'origine cérébrale (IMC ou IMOC) a été définie en 1955 par le professeur Guy Tardieu comme étant une infirmité motrice due à des lésions survenues durant la période périnatale. Aujourd'hui, on utilise plus fréquemment le terme de « paralysie cérébrale ». Les sujets souffrant d'affections neurologiques dégénératives ou de retards moteurs liés à une déficience intellectuelle ne peuvent donc pas être considérés comme IMOC. Il s'agit d'un état pathologique (non évolutif) non héréditaire comportant diverses atteintes neurologiques.
Marche à piedLa marche est un mode de locomotion naturel chez l'homme. Elle consiste en un déplacement en appui alternatif sur les pieds, en position debout et en ayant toujours au moins un point d'appui en contact avec le sol, sinon il s'agit de course. C'est un des principaux modes de déplacement, qui fait partie des modes dits « fatigants », « doux » ou « actifs », comme des moyens de transport tels que la bicyclette, la trottinette ou le patinage à roulettes, par opposition aux modes de transport motorisés parfois dits « passifs ».
Action de groupe (mathématiques)En mathématiques, une action d'un groupe sur un ensemble est une loi de composition externe du groupe sur l'ensemble, vérifiant des conditions supplémentaires. Plus précisément, c'est la donnée, pour chaque élément du groupe, d'une permutation de l'ensemble, de telle manière que toutes ces bijections se composent de façon compatible avec la loi du groupe. Étant donné un ensemble E et un groupe G, dont la loi est notée multiplicativement et dont l'élément neutre est noté e, une action (ou opération) de G sur E est une application : vérifiant chacune des 2 propriétés suivantes : On dit également que G opère (ou agit) sur l'ensemble E.
Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Correlation coefficientA correlation coefficient is a numerical measure of some type of correlation, meaning a statistical relationship between two variables. The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. Several types of correlation coefficient exist, each with their own definition and own range of usability and characteristics. They all assume values in the range from −1 to +1, where ±1 indicates the strongest possible agreement and 0 the strongest possible disagreement.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Groupe diédralEn mathématiques, le groupe diédral d'ordre 2n, pour un nombre naturel non nul n, est un groupe qui s'interprète notamment comme le groupe des isométries du plan conservant un polygone régulier à n côtés. Le groupe est constitué de n éléments correspondant aux rotations et n autres correspondant aux réflexions. Il est noté Dn par certains auteurs et D par d'autres. On utilisera ici la notation D. Le groupe D est le groupe cyclique d'ordre 2, noté C ; le groupe D est le groupe de Klein à quatre éléments.
Workweek and weekendThe weekdays and weekend are the complementary parts of the week devoted to labour and rest, respectively. The legal weekdays (British English), or workweek (American English), is the part of the seven-day week devoted to working. In most of the world, the workweek is from Monday to Friday and the weekend is Saturday and Sunday. A weekday or workday is any day of the working week. Other institutions often follow this pattern, such as places of education.
Groupe réductifEn mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.