Additive rhythm and divisive rhythmIn music, the terms additive and divisive are used to distinguish two types of both rhythm and meter: A divisive (or, alternately, multiplicative) rhythm is a rhythm in which a larger period of time is divided into smaller rhythmic units or, conversely, some integer unit is regularly multiplied into larger, equal units. This can be contrasted with additive rhythm, in which larger periods of time are constructed by concatenating (joining end to end) a series of units into larger units of unequal length, such as a meter produced by the regular alternation of and .
Polyrythmievignette|hémiole représentée par 3/4-6/8 polymètre La polyrythmie consiste à superposer plusieurs rythmes d'accentuations différentes, par exemple binaires et ternaires. Chaque partie rythmique est appelée « motif » quand il s’agit d’un rythme qui se répète. La notion de rythmique, et donc de polyrythmie, ne se limite pas à des parties de percussions. On peut donc construire le rythme « de base » suivant (ce rythme est souvent appelé un « trois sur quatre ») : Les o symbolisent chacun une noire et les × un soupir (un silence de la durée d’une noire) On constate alors qu'on retrouve la position initiale au bout d'une période de 12 temps (3x4 temps sur 4x3 temps).
Spectral leakageThe Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum. Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles (phase) of the non-zero values of S(f). Any other type of operation creates new frequency components that may be referred to as spectral leakage in the broadest sense. Sampling, for instance, produces leakage, which we call aliases of the original spectral component.
Ensemble infini non dénombrableUn ensemble infini non dénombrable est un ensemble qui est « trop gros » pour être dénombrable. De manière précise, c'est un ensemble infini qui ne peut être mis en bijection avec les entiers naturels. En présence de l'axiome du choix, cela signifie que son cardinal est strictement supérieur au cardinal du dénombrable. On dit souvent simplement ensemble non dénombrable. L'ensemble des nombres réels en est un exemple. Avec l'hypothèse généralisée du continu, un ensemble des cardinalités infinies non dénombr
Notation musicaleLa notation musicale est la transcription sur un support d'une œuvre musicale afin de la conserver, de la diffuser et de l'interpréter ultérieurement. D'une manière générale, quelles que soient les époques et les civilisations, on peut définir l'écriture musicale comme étant un procédé de notation qui met en relation un système et un code. Le code d'un système musical décrit celui-ci en lui associant un certain nombre de symboles plus ou moins contraignants pouvant définir la durée, la hauteur ou les nuances d'un son.
Régularités naturellesLes régularités dans la nature sont des formes répétées que l'on trouve dans le monde naturel, telles que les spirales, les arbres, la disposition de traits ou de fentes, les chants d'oiseau. Chaque régularité peut être simulée mathématiquement et peut s'expliquer à un niveau physique, chimique ou biologique (sélection naturelle). Cette branche de la mathématique applique des simulations informatiques à une grande gamme de formes. Le philosophe grec Platon (env. 427 – env.
Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Premier ordinal non dénombrableEn mathématiques, le premier ordinal non dénombrable, noté ω1 ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable. ω1 est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments. Comme tout ordinal (dans l'approche de von Neumann), ω1 est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈.
Fonction périodiqueEn mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc. thumb|La fonction sinus est périodique de période 2π.
Periodic systems of small moleculesPeriodic systems of molecules are charts of molecules similar to the periodic table of the elements. Construction of such charts was initiated in the early 20th century and is still ongoing. It is commonly believed that the periodic law, represented by the periodic chart, is echoed in the behavior of molecules, at least small molecules. For instance, if one replaces any one of the atoms in a triatomic molecule with a rare gas atom, there will be a drastic change in the molecule’s properties.