Démonstration formelleUne démonstration formelle est une séquence finie de propositions (appelées formules bien formées dans le cas d'un langage formel) dont chacun est un axiome, une hypothèse, ou résulte des propositions précédentes dans la séquence par une règle d'inférence. La dernière proposition de la séquence est un théorème d'un système formel. La notion de théorème n'est en général pas effective, donc n'existe pas de méthode par laquelle nous pouvons à chaque fois trouver une démonstration d'une proposition donnée ou de déterminer s'il y en a une.
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Loi de puissanceLa loi de puissance est une relation mathématique entre deux quantités. Si une quantité est la fréquence d'un évènement et l'autre est la taille d'un évènement, alors la relation est une distribution de la loi de puissance si les fréquences diminuent très lentement lorsque la taille de l'évènement augmente. En science, une loi de puissance est une relation entre deux quantités x et y qui peut s'écrire de la façon suivante : où a est une constante dite constante de proportionnalité, k, valeur négative, est une autre constante, dite exposant, puissance, indice ou encore degré de la loi et x nombre réel strictement positif.
RigourRigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as mathematical proofs which must maintain consistent answers; or socially imposed, such as the process of defining ethics and law. "Rigour" comes to English through old French (13th c.
Longue traîneEn statistique, la queue ou traîne d'une loi de probabilité correspond à la portion éloignée de la « tête » ou valeur centrale de la loi. Une loi de probabilité est dite à longue traîne si une plus grande partie de la loi est contenue dans sa traîne par rapport à celle de la loi normale. Une loi à longue traîne est un cas particulier de lois à queue lourde. Benoît Mandelbrot a été surnommé le « père des longues traînes » pour son article de 1951 dans ce domaine.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Creation and annihilation operatorsCreation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually denoted ) lowers the number of particles in a given state by one. A creation operator (usually denoted ) increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator.
Opérateur hamiltonienL’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.
Loi de probabilité à queue lourdevignette|Long tail. Dans la théorie des probabilités, une loi de probabilité à queue lourde est une loi de probabilité dont les queues ne sont pas exponentiellement bornées, ce qui signifie qu'elles ont des queues plus « lourdes » que la loi exponentielle. Dans de nombreuses applications, c'est la queue droite de la distribution qui est intéressante, mais une distribution peut avoir une queue lourde à gauche, ou les deux queues peuvent être lourdes.
Loi de ZipfLa loi de Zipf est une observation empirique concernant la fréquence des mots dans un texte. Elle a pris le nom de son auteur, George Kingsley Zipf (1902-1950). Cette loi a d'abord été formulée par Jean-Baptiste Estoup et a été par la suite démontrée à partir de formules de Shannon par Benoît Mandelbrot. Elle est parfois utilisée en dehors de ce contexte, par exemple au sujet de la taille et du nombre des villes dans chaque pays, lorsque cette loi semble mieux répondre aux chiffres que la distribution de Pareto.