Topologie (circuits électriques)La topologie d'un circuit électronique est la forme prise par le réseau d'interconnexions des composantes du circuit. Des valeurs différentes des composantes sont considérées comme formant la même topologie. La topologie ne se préoccupe pas de la disposition physique des composantes d'un circuit, ni de leur position sur un schéma électrique (diagramme de circuit). Similairement au concept mathématique de topologie, elle ne se préoccupe que des connexions qui existent entre les composantes.
Euler's equations (rigid body dynamics)In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is where M is the applied torques and I is the inertia matrix. The vector is the angular acceleration. Again, note that all quantities are defined in the rotating reference frame.
Mouvement à la PoinsotEn mécanique du solide, on appelle mouvement à la Poinsot, le mouvement d'un solide autour de son centre de gravité G, le moment des forces extérieures par rapport à G étant nul. Ce mouvement est caractérisé par la conservation du moment cinétique et de l'énergie cinétique de rotation , demi-produit scalaire du moment cinétique et du vecteur de rotation instantanée. Il existe 3 cas : le solide est à symétrie sphérique. Ses moments principaux d'inertie sont égaux : A = B = C.
Topologie de réseauvignette Une topologie de réseau informatique correspond à l'architecture (physique, logicielle ou logique) de celui-ci, définissant les liaisons entre les équipements du réseau et une hiérarchie éventuelle entre eux. Elle peut définir la façon dont les équipements sont interconnectés et la représentation spatiale du réseau (topologie physique). Elle peut aussi définir la façon dont les données transitent dans les lignes de communication (topologies logiques).
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Étoile binaireEn astronomie, une étoile binaire ou binaire, appelée aussi système (stellaire) binaire ou étoile double physique, est un type de système binaire composée de deux étoiles orbitant autour d'un centre de gravité commun. Le terme « étoile binaire » a apparemment été inventé par William Herschel en 1802 pour indiquer . Au , des étoiles binaires sont classées en différents types selon leurs propriétés observables : binaire visuelle, binaire astrométrique, binaire spectroscopique et binaire à éclipses.
Binary dataBinary data is data whose unit can take on only two possible states. These are often labelled as 0 and 1 in accordance with the binary numeral system and Boolean algebra. Binary data occurs in many different technical and scientific fields, where it can be called by different names including bit (binary digit) in computer science, truth value in mathematical logic and related domains and binary variable in statistics. A discrete variable that can take only one state contains zero information, and is the next natural number after 1.
Rigid transformationIn mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space.
Variable discrèteIn mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.