Régression de CoxLa régression de Cox (modèle à risque proportionnel) est une classe de modèles de survie en statistique. Les modèles de survie étudient le temps écoulé avant qu'un événement ne survienne. Historiquement, dans le modèle de Cox, cet événement est le décès de l'individu, c'est pourquoi on parle généralement de survie et de décès. Au cours des années, l'utilisation du modèle s'est étendue à d'autres situations, l'événement peut donc être de quelconque nature : il peut s'agir de la récidive d'une maladie, ou à l'inverse d'une guérison.
Analyse de surviethumb|Exemple de courbe de survie. L'analyse de (la) survie est une branche des statistiques qui cherche à modéliser le temps restant avant la mort pour des organismes biologiques (l'espérance de vie) ou le temps restant avant l'échec ou la panne dans les systèmes artificiels, ce que l'on représente graphiquement sous la forme d'une courbe de survie. On parle aussi d'analyse de la fiabilité en ingénierie, d'analyse de la durée en économie ou d'analyse de l'histoire d'événements en sociologie.
Hazard ratioIn survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate per unit time of the control population. The hazard ratio would be 2, indicating higher hazard of death from the treatment. A scientific paper might utilise a Hazard Ratio (HR) to state something as follows.
Biais de sélectionDans une étude statistique, le terme biais de sélection désigne une erreur systématique faite lors de la sélection des sujets à étudier. Ce terme regroupe tous les biais pouvant conduire à ce que les sujets effectivement observés lors d'une enquête ne constituent pas un groupe représentatif des populations censées être étudiées et ne permettent donc pas de répondre aux questions posées dans le protocole. Les biais de sélection se produisent lors de l'échantillonnage, c'est-à-dire lors de la sélection d'un échantillon représentatif de la population étudiée.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Essai randomisé contrôléUn essai contrôlé randomisé (ECR), , essai randomisé contrôlé (ERC), essai comparatif randomisé (ECR) (de l'anglais randomized controlled trial ou RCT), essai comparatif aléatoire ou encore essai contrôlé aléatoire (ECA) est un type d'étude scientifique utilisé dans de multiples domaines (psychologie, soins infirmiers, éducation, agriculture, économie) et en particulier en médecine où il occupe un rôle prépondérant.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.