Diagramme de boucle causalevignette|308x308px|Exemple de boucle de rétroaction de renforcement : solde bancaire (bank balance) et intérêts perçus (earned interest) Un diagramme de boucle causale (DBC) est un diagramme qui permet de visualiser comment les différentes variables dans un système sont interdépendantes. Le diagramme se compose d'un ensemble de nœuds et d'arcs. Les nœuds représentent les variables et les arcs les connexions, ou liens de causalités, entre les variables.
Survival functionThe survival function is a function that gives the probability that a patient, device, or other object of interest will survive past a certain time. The survival function is also known as the survivor function or reliability function. The term reliability function is common in engineering while the term survival function is used in a broader range of applications, including human mortality. The survival function is the complementary cumulative distribution function of the lifetime.
Réseau de neurones de HopfieldLe réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert.
Causalitévignette|Exemple classique de la chute d'un domino causé par la chute d'un autre. En science, en philosophie et dans le langage courant, la causalité désigne la relation de cause à effet. la cause, corrélat de l'effet, c'est . C'est ce qui produit l'effet ; la causalité est le . Autrement dit, la causalité est l'influence par laquelle un événement, un processus, un état ou un objet (une cause) contribue à la production d'un autre événement, processus, état ou objet (un effet) considéré comme sa conséquence.
Variable discrèteIn mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value.
Transformée de HadamardLa transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2 nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels). Ces matrices sont des matrices de Hadamard.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Transformée de Fourier quantiqueEn informatique quantique, la transformée de Fourier quantique (TFQ) est une transformation linéaire sur des bits quantiques, et est l'analogie quantique de la transformée de Fourier discrète. La transformée de Fourier quantique est l'un des nombreux algorithmes quantiques, qui incluent notamment l'algorithme de Shor qui permet de factoriser et de calculer le logarithme discret, l'algorithme d'estimation de phase quantique qui estime les valeurs propres d'un opérateur unitaire et les algorithmes traitant du problème de sous-groupe caché .
Discrete time and continuous timeIn mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.
Causal graphIn statistics, econometrics, epidemiology, genetics and related disciplines, causal graphs (also known as path diagrams, causal Bayesian networks or DAGs) are probabilistic graphical models used to encode assumptions about the data-generating process. Causal graphs can be used for communication and for inference. They are complementary to other forms of causal reasoning, for instance using causal equality notation. As communication devices, the graphs provide formal and transparent representation of the causal assumptions that researchers may wish to convey and defend.