Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Courbe algébriqueEn mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
Algebraic operationIn mathematics, a basic algebraic operation is any one of the common operations of arithmetic, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). These operations may be performed on numbers, in which case they are often called arithmetic operations. They may also be performed, in a similar way, on variables, algebraic expressions, and more generally, on elements of algebraic structures, such as groups and fields.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Lattice-based cryptographyLattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions are currently important candidates for post-quantum cryptography. Unlike more widely used and known public-key schemes such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems — which could, theoretically, be defeated using Shor's algorithm on a quantum computer — some lattice-based constructions appear to be resistant to attack by both classical and quantum computers.
Apis (insecte)(mot latin signifiant apis « abeille ») est un genre qui regroupe sept à neuf espèces d'insectes sociaux de la famille des Apidés (Apidae) et de la sous-famille des Apinae. C'est le seul genre de la tribu des Apini. Ces espèces produisent du miel en quantité notable ; ce genre regroupe donc les espèces qui sont principalement exploitées pour l'apiculture. Les membres de ce genre sont communément désignés par le terme abeilles, quoique ce terme puisse désigner aussi les taxons supérieurs Apoidea, Apidae et Apinae.
Apis dorsataLes abeilles géantes (Apis dorsata) sont des abeilles migratrices qui vivent dans le sous-continent indien, du Pakistan à Sri Lanka et de la Chine à l'Australie. Elles produisent du miel, mais ne sont pas domestiquées. centré|vignette|Deux abeilles géantes d'Asie Apis dorsata sur une fleur de dahlia récoltant du pollen. Elles peuvent avoir un comportement agressif. Michael S. Engel (1999) identifie plusieurs sous-espèces : Apis dorsata dorsata ; en Inde Apis dorsata binghami Cockerell ; L'abeille géante d'Indonésie et Malaisie.
Structure (logique mathématique)En logique mathématique, plus précisément en théorie des modèles, une structure est un ensemble muni de fonctions et de relations définies sur cet ensemble. Les structures usuelles de l'algèbre sont des structures en ce sens. On utilise également le mot modèle comme synonyme de structure (voir Note sur l'utilisation du mot modèle). La sémantique de la logique du premier ordre se définit dans une structure.