Espace homogèneEn géométrie, un espace homogène est un espace sur lequel un groupe agit de façon transitive. Dans l'optique du programme d'Erlangen, le groupe représente des symétries préservant la géométrie de l'espace, et le caractère homogène se manifeste par l'indiscernabilité des points, et exprime une notion disotropie. Les éléments de l'espace forment une seule orbite selon G. Les espaces des géométries classiques (en dimension finie quelconque) de points sont des espaces homogènes pour leur groupe de symétries.
LinearizationIn mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology.
Systems scienceSystems science, also referred to as systems research, or, simply, systems, is a transdisciplinary field concerned with understanding systems—from simple to complex—in nature, society, cognition, engineering, technology and science itself. The field is diverse, spanning the formal, natural, social, and applied sciences. To systems scientists, the world can be understood as a system of systems.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Ingénierie des systèmesL'ingénierie des systèmes ou ingénierie système est une approche scientifique interdisciplinaire, dont le but est de formaliser et d'appréhender la conception et la validation de systèmes complexes. L'ingénierie des systèmes a pour objectif de maîtriser et de contrôler la conception de systèmes dont la complexité ne permet pas le pilotage simple. Par système, on entend un ensemble d'éléments humains ou matériels en interdépendance les uns les autres et qui inter-opèrent à l'intérieur de frontières ouvertes ou non sur l'environnement.
Système de systèmesUn système de systèmes est un système constitué de systèmes constituants hétérogènes. Un système de système a des capacités plus grandes que la somme des fonctions de ses systèmes constituants. Un système de système se caractérise par: Une indépendance opérationnelle de ses systèmes constituants Une indépendance managériale de ses systèmes Une distribution géographique marquée de ses systèmes constituants Un processus de développement incrémental La présence de comportements émergeant Un système de contrôle
Rétroactionvignette|Représentation d'une boucle de rétroaction. La rétroaction (en anglais feedback) est un processus dans lequel un effet intervient aussi comme agent causal sur sa propre origine, la séquence des expressions de la cause principale et des effets successifs formant une boucle de rétroaction. Une rétroaction est une interaction dans laquelle la perturbation d’une variable provoque le changement d'une seconde variable, qui influe à son tour sur la variable initiale. Une rétroaction forme une boucle fermée dans un diagramme de causalité.
Contre-réactionvignette|Modèle simple de contre-réaction. En électronique le principe de la contre-réaction permet le contrôle des circuits d', de filtrage ou d'asservissement. Elle permet de rendre leurs caractéristiques de fonctionnement indépendantes, dans une large mesure, des différents constituants internes de ces systèmes. Le principe de la contre-réaction a été découvert par Harold Stephen Black le 2 août 1927. Cette idée lui serait venue alors qu'il se rendait à son travail aux laboratoires Bell.
Hyperbolic 3-manifoldIn mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group).
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).