HydromécaniqueL'hydromécanique, ou plus communément hydraulique industrielle ou hydraulique de puissance, est une discipline liée à la construction mécanique et à la mécanique des fluides qui étudie et met en œuvre des dispositifs à la fois mécanique et hydraulique. L'hydromécanique est une combinaison d'hydrostatique et d'hydrodynamique. L'intérêt principal des dispositifs hydromécaniques est d'avoir une forte puissance massique : de à . De plus ces dispositifs permettent de développer une grande force ou un grand couple pour des vitesses faibles et même à l'arrêt.
Mode normaldroite|vignette|248px|Visualisation d'un mode normal de vibration d'une peau de tambour, constitué d'une membrane circulaire souple attachée rigidement sur la totalité de ses bords. . Pour un système oscillatoire à plusieurs degrés de liberté, un mode normal ou mode propre d'oscillation est une forme spatiale selon laquelle un système excitable (micro ou macroscopique) peut osciller après avoir été perturbé au voisinage de son état d'équilibre ; une fréquence naturelle de vibration est alors associée à cette forme.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Neutral particle oscillationIn particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais. For example, a neutron cannot transmute into an antineutron as that would violate the conservation of baryon number.
Amortissement physiqueEn physique, l'amortissement d'un système est une atténuation de ses mouvements par dissipation de l'énergie qui les engendre. Il peut être lié de diverses manières à la vitesse. Le frottement entre deux solides correspond à une dissipation sous la forme de chaleur. Il est régi par la loi de Coulomb selon laquelle la force de frottement ne dépend pas de la vitesse. Lorsque l'interface est lubrifiée l'énergie mécanique est encore transformée en chaleur mais la force de frottement devient proportionnelle à la vitesse selon la loi de la viscosité.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Paper-based microfluidicsPaper-based microfluidics are microfluidic devices that consist of a series of hydrophilic cellulose or nitrocellulose fibers that transport fluid from an inlet through the porous medium to a desired outlet or region of the device, by means of capillary action. This technology builds on the conventional lateral flow test which is capable of detecting many infectious agents and chemical contaminants. The main advantage of this is that it is largely a passively controlled device unlike more complex microfluidic devices.
RésonanceLa résonance est un phénomène selon lequel certains systèmes physiques (électriques, mécaniques) sont sensibles à certaines fréquences. Un système résonant peut accumuler une énergie, si celle-ci est appliquée sous forme périodique, et proche d'une fréquence dite « fréquence de résonance ». Soumis à une telle excitation, le système va être le siège d'oscillations de plus en plus importantes, jusqu'à atteindre un régime d'équilibre qui dépend des éléments dissipatifs du système, ou bien jusqu'à une rupture d'un composant du système.
Théorie des écoulements à potentiel de vitessevignette|Diagrammes plan d'écoulement des fluides autour d'un cylindre et d'un profil d'aile En mécanique des fluides, la théorie des écoulements à potentiel de vitesse est une théorie des écoulements de fluide où la viscosité est négligée. Elle est très employée en hydrodynamique. La théorie se propose de résoudre les équations de Navier-Stokes dans les conditions suivantes : l'écoulement est stationnaire le fluide n'est pas visqueux il n'y a pas d'action externe (flux de chaleur, électromagnétisme, gravité .
Fluide non newtonienUn fluide non newtonien est un fluide qui ne suit pas la loi de viscosité de Newton, c'est-à-dire une viscosité constante indépendante de la contrainte. Dans les fluides non newtoniens, la viscosité peut changer lorsqu'elle est soumise à une force pour devenir plus liquide ou plus solide. Le ketchup, par exemple, devient plus coulant lorsqu'il est secoué et se comporte donc de manière non newtonienne.