Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Analyse dimensionnellethumb|Préparation d'une maquette dans un bassin d'essai. L'analyse dimensionnelle est une méthode pratique permettant de vérifier l'homogénéité d'une formule physique à travers ses équations aux dimensions, c'est-à-dire la décomposition des grandeurs physiques qu'elle met en jeu en un produit de grandeurs de base : longueur, durée, masse, intensité électrique, irréductibles les unes aux autres.
Ensemble videvignette|Notation de l'ensemble vide. En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément. L'ensemble vide peut être noté d'un O barré, à savoir ∅ ou simplement { }, qui est une paire d'accolades ne contenant qu'une espace, pour représenter un ensemble qui ne contient rien. La notation ∅ a été introduite par André Weil, dans le cadre de l'institution de notations par le groupe Bourbaki. Von Neumann dans son article de 1923, qui est l'une des premières références qui l'aborde, le note O.
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Topologie en basses dimensionsEn mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie.
Grand cardinalEn mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que א, א, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes. Un axiome de grand cardinal est un axiome affirmant qu'il existe un cardinal (ou parfois une famille de cardinaux) ayant une propriété de grand cardinal donnée.
Théorème des cinq pointsEn géométrie, le théorème des cinq points est un énoncé sur les coniques du plan, démontré initialement par Blaise Pascal. Il assure que par cinq points trois à trois non alignés passe une unique conique propre. Ce théorème admet des versions dégénérées, par exemple, avec quatre conditions d'incidence et une de tangence : il existe une unique conique propre passant par quatre points trois à trois non alignés, et tangente en l'un de ces points à une droite prescrite ne contenant aucun des trois autres points ; ou encore, avec trois conditions d'incidence et deux de tangence : il existe une unique conique propre passant par trois points non alignés prescrits, et tangente en chacun des deux premiers points à une droite prescrite qui ne contient qu'un seul des trois points.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.