Generalized eigenvectorIn linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis. There may not always exist a full set of linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.
Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Fonction de partitionEn physique statistique, la fonction de partition Z est une grandeur fondamentale qui englobe les propriétés statistiques d'un système à l'équilibre thermodynamique. C'est une fonction de la température et d'autres paramètres, tels que le volume contenant un gaz par exemple. La plupart des variables thermodynamiques du système, telles que l'énergie totale, l'entropie, l'énergie libre ou la pression peuvent être exprimées avec cette fonction et ses dérivées.
Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Ensemble statistiqueEn physique statistique, un ensemble statistique est une abstraction qui consiste à considérer une collection de copies virtuelles (ou répliques) d'un système physique dans l'ensemble des états accessibles où il est susceptible de se trouver, compte tenu des contraintes extérieures qui lui sont imposées, telles le volume, le nombre de particules, l'énergie et la température. Cette notion, introduite par le physicien américain Josiah Willard Gibbs en 1902, est un concept central de la physique statistique.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Taux d'intérêt réelEn économie et en sciences actuarielles, le taux d'intérêt réel est le taux d'intérêt nominal auquel on doit effectuer une correction afin qu'il tienne compte du taux d'inflation et de la prime de risque. Avec un taux d'intérêt nominal et un taux d'inflation , tous deux mesurés sur une même période, l'équation du taux d'intérêt réel, noté , sur cette période est la suivante: Il est possible, de façon intuitive, d'approximer le taux d'intérêt réel de la façon suivante : En fait, cette équation approximative peut être déterminée ex post grâce à l'équation de Fisher : Où est le taux d'intérêt réel, le taux d'intérêt nominal, et le taux d'inflation.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.