Stress chez l'humainLe 'stress chez l'humain' qualifie à la fois une situation contraignante et les processus physiologiques mis en place par l'organisme pour s'y adapter. Chez l'adulte, le stress peut avoir des origines physiques, pathogéniques (ayant une maladie génétique, infectieuse ou parasitaire comme origine par exemple), socio-psychiques, médiées par divers processus hormonaux (hormones, ou molécules de stress), chimiques et biochimiques de l'organisme.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Trouble de stress post-traumatique complexeLe trouble de stress post-traumatique complexe (TSPTc) ou état de stress post-traumatique (ESPTc) est un trouble psychique lié au stress survenant généralement en réponse à des traumatismes complexes, c'est-à-dire des expositions habituellement prolongées ou répétées à une série d'événements traumatisants. Selon la Classification internationale des maladies (CIM), le trouble de stress posttraumatique complexe (TSPT complexe) est un ). Selon la CIM-11, les effets sur les personnes peuvent notamment consister en des , ou encore .
Trouble de stress post-traumatiqueLe trouble de stress post-traumatique (ou TSPT) désigne un type de trouble anxieux sévère qui se manifeste à la suite d'une expérience vécue comme traumatisante avec une confrontation à des idées de mort. Cette affection est aussi connue sous le nom de syndrome de stress post-traumatique (SSPT) ou état de stress post-traumatique (ESPT) dans la classification CIM10 (F43.1). L'abréviation anglaise PTSD (pour post-traumatic stress disorder) est parfois également utilisée.
AutomédicationSelon l'OMS, l'automédication est le traitement de certaines maladies par les patients grâce à des médicaments autorisés, accessibles sans ordonnance, sûrs et efficaces, dans les conditions d'utilisation indiquée. Cette automédication peut s'inscrire dans le cadre d'un "autosoin" défini comme la capacité des personnes, des familles et des communautés à faire la promotion de la santé, à prévenir les maladies, à rester en bonne santé et à faire face à la maladie et au handicap avec ou sans l’accompagnement d’un prestataire de soins.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Rang (algèbre linéaire)En algèbre linéaire : le rang d'une famille de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. Par exemple, pour une famille de vecteurs linéairement indépendants, son rang est le nombre de vecteurs ; le rang d'une application linéaire de dans est la dimension de son , qui est un sous-espace vectoriel de . Le théorème du rang relie la dimension de , la dimension du noyau de et le rang de ; le rang d'une matrice est le rang de l'application linéaire qu'elle représente, ou encore le rang de la famille de ses vecteurs colonnes ; le rang d'un système d'équations linéaires est le nombre d'équations que compte tout système échelonné équivalent.
Densité électroniqueright|thumb|300px|Carte de densité électronique dans le plan [1-10] du diamant. En mécanique quantique, et en particulier en chimie quantique, la densité électronique correspondant à une fonction d'onde N-électronique est la fonction monoélectronique donnée par : Dans le cas où est un déterminant de Slater constitué de N orbitales de spin : La densité électronique à deux électrons est donnée par : Ces quantités sont particulièrement importantes dans le contexte de la théorie de la fonctionnelle de la densité : Les coordonnées x utilisées ici sont les coordonnées spin-spatiales.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.