Variation totale d'une fonctionEn mathématiques, la variation totale est liée à la structure (locale ou globale) du codomaine d'une fonction. Pour une fonction continue à valeurs réelles f, définie sur un intervalle [a, b] ⊂ R, sa variation totale sur l'intervalle de définition est une mesure de la longueur d'arc de la projection sur l'axe des ordonnées de la courbe paramétrée (x, f(x)), pour x ∈ [a, b]. L'idée de variation totale pour les fonctions d'une variable réelle a d'abord été introduite par Camille Jordan, afin de démontrer un théorème de convergence pour les séries de Fourier de fonctions discontinues périodiques à variation bornée.
SuperlentilleUne superlentille est une lentille optique élaborée avec des métamatériaux et permettant de distinguer des détails jusqu'à vingt fois inférieurs à la longueur d'onde d'utilisation. Une lentille classique est dite « limitée par la diffraction », c'est-à-dire que l'image la plus petite que l'on pourra obtenir sera toujours une tache d'Airy et donc possède un diamètre dépendant du diamètre de la lentille et de la longueur d'onde d'utilisation, limitant l'utilisation de lentilles classiques en verre optique à l'observation d'objet de quelques centaines de nanomètres.
Total variation denoisingIn signal processing, particularly , total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of the absolute is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as .
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
Signe (arithmétique)vignette|Les symboles plus et moins sont utilisés pour indiquer le signe d'un nombre En arithmétique, le signe d'un nombre réel qualifie sa position par rapport à zéro. Un nombre est dit positif s'il est supérieur ou égal à zéro ; il est dit négatif s'il est inférieur ou égal à zéro. Le nombre zéro lui-même est donc à la fois positif et négatif. Le signe arithmétique est souvent noté à l'aide des signes algébriques « + » et « − » (plus et moins), notamment dans un tableau de signe.
MétamatériauEn physique, en électromagnétisme, le terme métamatériau désigne un matériau composite artificiel qui présente des propriétés électromagnétiques qu'on ne retrouve pas dans un matériau naturel. Il s'agit en général de structures périodiques, diélectriques ou métalliques, qui se comportent comme un matériau homogène n'existant pas à l'état naturel. Il existe plusieurs types de métamatériaux en électromagnétisme, les plus connus étant ceux susceptibles de présenter à la fois une permittivité et une perméabilité négatives.
Intégrale de LebesgueEn mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ) muni de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f.
Théorème de FubiniEn mathématiques, et plus précisément en analyse, le théorème de Fubini fournit des informations sur le calcul d'intégrales définies sur des ensembles produits et permet le calcul de telles intégrales. Ce résultat a été introduit par Guido Fubini en 1907. Il indique que sous certaines conditions, pour intégrer une fonction à plusieurs variables, on peut intégrer les variables les unes à la suite des autres.
InnovationLinnovation est la recherche constante d'améliorations de l'existant, par contraste avec linvention, qui vise à créer du nouveau. Dans le domaine économique, l'innovation se traduit par la conception d'un nouveau produit, service, processus de fabrication ou d'organisation pouvant être directement mis en œuvre dans l'appareil productif et répondant aux besoins du consommateur. Elle se distingue ainsi de l'invention ou de la découverte par le fait qu'elle peut être immédiatement mise en œuvre par les entreprises, dans le but d'obtenir un avantage compétitif.