Topological quantum field theoryIn gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.
Intrication quantiqueEn mécanique quantique, l'intrication quantique, ou enchevêtrement quantique, est un phénomène dans lequel deux particules (ou groupes de particules) forment un système lié, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare. Un tel état est dit « intriqué » ou « enchevêtré », parce qu'il existe des corrélations entre les propriétés physiques observées de ces particules distinctes. En effet, le théorème de Bell démontre que l'intrication donne lieu à des actions non locales.
Quantum tomographyQuantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state.
Vide quantiqueEn physique, le vide quantique décrit l'état du vide selon les principes de la mécanique quantique. Alors que l'on croyait l'univers rempli d'éther, la physique du a abandonné cette notion pour un espace littéralement vide de matière. Les principes quantiques montrent que ce vide est en réalité rempli d'énergie qui engendre de nombreux effets : on parle alors d'énergie du vide. Dans la théorie de l'électrodynamique quantique, les particules élémentaires échangent des photons virtuels pour interagir.
Méson scalaireIn high energy physics, a scalar meson is a meson with total spin 0 and even parity (usually noted as JP=0+). Compare to pseudoscalar meson. The first known scalar mesons have been observed since the late 1950s, with observations of numerous light states and heavier states proliferating since the 1980s. Scalar mesons are most often observed in proton-antiproton annihilation, radiative decays of vector mesons, and meson-meson scattering.
Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
États de BellLes états de Bell sont en informatique quantique les états d'intrication maximale de deux particules. Les quatre états ci-dessous à deux qubits, correspondant à une intrication maximale, sont désignés comme étant les États de Bell : (1) (2) (3) (4) vignette|Circuit quantique obtenant . Un circuit quantique composé d'une porte de Hadamard et d'une permet d'obtenir le premier état de Bell . Ce circuit est utilisé dans la téléportation quantique, dans lequel un deuxième circuit permet d'obtenir les quatre états de Bell.
Théorie des cordes topologiquesEn physique théorique, la théorie des cordes topologiques est une version simplifiée de la théorie des supercordes où seule la topologie de la feuille d’univers (i.e. la surface générée par l’évolution temporelle de la corde) entre en compte dans le calcul de la . La théorie des cordes topologiques correspond au cas où la théorie conforme couplée à la gravité est un modèle sigma non linéaire en deux dimensions dont l’espace-cible est une variété de Calabi-Yau.
Quantum networkQuantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
Principe de superposition quantiquethumb|Mesure de la position d'un ensemble de particules étant dans le même état superposé. En mécanique quantique, selon le principe de superposition, un même état quantique peut posséder plusieurs valeurs pour une certaine quantité observable (spin, position, quantité de mouvement, etc.) Ce principe résulte du fait que l'état – quel qu'il soit – d'un système quantique (une particule, une paire de particules, un atome, etc.) est représenté par un vecteur dans un espace vectoriel nommé espace de Hilbert (premier postulat de la mécanique quantique).