Force (physique)Une force modélise, en physique classique, une action mécanique exercée sur un objet ou une partie d'un objet par un autre objet ou partie d'objet. L'ensemble des forces appliquées à un objet a pour effet de lui communiquer une accélération ou de le déformer. Introduit antérieurement , le concept de force a été précisé en 1684 par Isaac Newton, qui en a fait l'un des fondements de la mécanique newtonienne. Le concept de force est ancien, mais il a mis longtemps à obtenir une nouvelle définition utilisable.
Force centrifugeLa force centrifuge, nom courant de l'effet centrifuge, est une force parfois qualifiée de fictive qui apparaît en physique dans le contexte de l'étude du mouvement des objets dans des référentiels non inertiels. L'effet ressenti, modélisé par cette force, est dû à l'inertie des corps face aux mouvements de rotation de ces référentiels et se traduit par une tendance à éloigner les corps de leur centre de rotation. Un exemple en est la sensation d'éjection que ressent un voyageur dans un véhicule qui effectue un virage.
Discrete-time Fourier transformIn mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Équation intégraleUne équation intégrale est une équation où la fonction inconnue est à l'intérieur d'une intégrale. Elles sont importantes dans plusieurs domaines physiques. Les équations de Maxwell sont probablement leurs plus célèbres représentantes. Elles apparaissent dans des problèmes des transferts d'énergie radiative et des problèmes d'oscillations d'une corde, d'une membrane ou d'un axe. Les problèmes d'oscillation peuvent aussi être résolus à l'aide d'équations différentielles.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Elasticity tensorThe elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. Other names are elastic modulus tensor and stiffness tensor. Common symbols include and . The defining equation can be written as where and are the components of the Cauchy stress tensor and infinitesimal strain tensor, and are the components of the elasticity tensor. Summation over repeated indices is implied. This relationship can be interpreted as a generalization of Hooke's law to a 3D continuum.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.