Sous-espace de KrylovEn algèbre linéaire, le sous-espace de Krylov d'ordre r associé à une matrice de taille et un vecteur b de dimension n est le sous-espace vectoriel linéaire engendré par les vecteurs images de b par les r premières puissances de A (à partir de ), c'est-à-dire Le concept porte le nom du mathématicien appliqué et ingénieur naval russe Alexei Krylov, qui a publié un article à ce sujet en 1931. Les vecteurs sont linéairement indépendants tant que , et . Ainsi, désigne la dimension maximale d'un sous-espace de Krylov.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Arnoldi iterationIn numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices. The Arnoldi method belongs to a class of linear algebra algorithms that give a partial result after a small number of iterations, in contrast to so-called direct methods which must complete to give any useful results (see for example, Householder transformation).
Triplet de GelfandEn analyse fonctionnelle, le triplet de Gelfand (aussi triplet de Banach-Gelfand ou triade hilbertienne ou rigged Hilbert space) est un espace-triplet consistant en un espace de Hilbert , un espace de Banach (ou plus généralement un espace vectoriel topologique) et son dual topologique . L'espace est choisi tel que soit un sous-espace dense dans et que son inclusion soitcontinue. Cette construction a l'avantage que les éléments de peuvent être exprimés comme des éléments de l'espace dual en utilisant le théorème de représentation de Fréchet-Riesz.
GMRESEn mathématique, la généralisation de la méthode de minimisation du résidu (ou GMRES, pour Generalized minimal residual) est une méthode itérative pour déterminer une solution numérique d'un système d'équations linéaires. La méthode donne une approximation de la solution par un vecteur appartenant à un sous-espace de Krylov avec un résidu minimal. Pour déterminer ce vecteur, on utilise la . La méthode GMRES fut développée par Yousef Saad et Martin H. Schultz en 1986.
Espace de Hilbert à noyau reproduisantEn analyse fonctionnelle, un espace de Hilbert à noyau reproduisant est un espace de Hilbert de fonctions pour lequel toutes les applications sont des formes linéaires continues. De manière équivalente, il existe des espaces qu'on peut définir par des noyaux reproduisants. Le sujet a été originellement et simultanément développé par Nachman Aronszajn et Stefan Bergman en 1950. Les espaces de Hilbert à noyau reproduisant sont parfois désignés sous l’acronyme issu du titre anglais RKHS, pour Reproducing Kernel Hilbert Space.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Algorithme de LanczosEn algèbre linéaire, l’algorithme de Lanczos (ou méthode de Lanczos) est un algorithme itératif pour déterminer les valeurs et vecteurs propres d'une matrice carrée, ou la décomposition en valeurs singulières d'une matrice rectangulaire. Cet algorithme n'a pas de lien avec le fenêtrage de Lanczos (utilisé par exemple pour le redimensionnement d'images), si ce n'est que tous les deux tirent leur nom du même inventeur, le physicien et mathématicien hongrois Cornelius Lanczos.
Divergence de Kullback-LeiblerEn théorie des probabilités et en théorie de l'information, la divergence de Kullback-Leibler (ou divergence K-L ou encore entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Elle doit son nom à Solomon Kullback et Richard Leibler, deux cryptanalystes américains. Selon la NSA, c'est durant les années 1950, alors qu'ils travaillaient pour cette agence, que Kullback et Leibler ont inventé cette mesure. Elle aurait d'ailleurs servi à la NSA dans son effort de cryptanalyse pour le projet Venona.
Théorie ergodiquevignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».