Conditional mutual informationIn probability theory, particularly information theory, the conditional mutual information is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third. For random variables , , and with support sets , and , we define the conditional mutual information as This may be written in terms of the expectation operator: . Thus is the expected (with respect to ) Kullback–Leibler divergence from the conditional joint distribution to the product of the conditional marginals and .
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Probabilité conditionnellevignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Distance statistiquevignette|Représentation de la distance en variation totale (en gris) entre deux fonctions de densité En mathématiques, et plus précisément en théorie des probabilités et en statistique, la notion de distance statistique sert à mesurer l'écart entre deux lois de probabilité. Les distances statistiques sont notamment utilisées en théorie de l'information, en statistique, en apprentissage automatique, et en cryptologie. Lorsqu'aucune précision n'est donnée, la « distance statistique » entre deux lois fait généralement référence à la distance en variation totale.
Axiomes des probabilitésEn théorie des probabilités, les axiomes de probabilités, également appelés axiomes de Kolmogorov du nom d'Andreï Nikolaievitch Kolmogorov qui les a développés, désignent les propriétés que doit vérifier une application afin de formaliser l'idée de probabilité. Ces propriétés peuvent être résumées ainsi : si est une mesure sur un espace mesurable , alors doit être un espace de probabilité. Le théorème de Cox fournit une autre approche pour formaliser les probabilités, privilégiée par certains bayésiens.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.