Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Rétroactionvignette|Représentation d'une boucle de rétroaction. La rétroaction (en anglais feedback) est un processus dans lequel un effet intervient aussi comme agent causal sur sa propre origine, la séquence des expressions de la cause principale et des effets successifs formant une boucle de rétroaction. Une rétroaction est une interaction dans laquelle la perturbation d’une variable provoque le changement d'une seconde variable, qui influe à son tour sur la variable initiale. Une rétroaction forme une boucle fermée dans un diagramme de causalité.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
PapierLe papier est un matériau en feuilles minces fabriqué à partir de fibres végétales. C'est un support d'écriture et de dessin avec de nombreuses autres applications. On appelle carton un papier épais et rigide. L'usage du papier est attesté il y a en Chine. Il s'y fabrique à partir de plantes riches en cellulose. L'invention de la xylographie au en augmente l'usage et la fabrication. À la même époque, il se diffuse dans le monde musulman, où les fabricants utilisent le chiffon, puis en Occident où on lui ajoute de la colle pour l'adapter à l'écriture à la plume.