Particules en suspensionLes particules en suspension sont toutes les particules (solides ou en aérosols) portées par l'eau ou par l'air, quantifiables par filtration ou par d'autres procédés physiques. Les matières particulaires ou PM (acronyme de particulate matter en anglais) sont les particules en suspension dans l'atmosphère terrestre (aérosols atmosphériques). Un taux élevé de particules fines et ultrafines dans l'air est un facteur de risque sanitaire (maladies cardiovasculaires, altération des fonctions pulmonaires, cancer du poumon), induisant une nette diminution de l'espérance de vie.
NanoparticuleUne nanoparticule est selon la norme ISO TS/27687 un nano-objet dont les trois dimensions sont à l'échelle nanométrique, c'est-à-dire une particule dont le diamètre nominal est inférieur à environ. D'autres définitions évoquent un assemblage d'atomes dont au moins une des dimensions se situe à l'échelle nanométrique (ce qui correspond au « nano-objet » tel que défini par la norme ISO précitée) ou insistent sur leurs propriétés nouvelles (dues au confinement quantique et à leur surface spécifique) qui n'apparaissent que pour des tailles de moins d'une centaine de nanomètres.
Naissance des étoilesLa naissance des étoiles ou formation stellaire, voire stellogénèse ou stellogonie, est un domaine de recherche en astrophysique, qui consiste en l'étude des modes de formation des étoiles et des systèmes planétaires. Les étoiles en formation sont fréquemment appelées « étoiles jeunes ». Selon le scénario actuellement admis, confirmé par l'observation, les étoiles se forment en groupe à partir de la contraction gravitationnelle d'une nébuleuse, un nuage de gaz et de poussière, qui se fragmente en plusieurs cœurs protostellaires.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Ensemble videvignette|Notation de l'ensemble vide. En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément. L'ensemble vide peut être noté d'un O barré, à savoir ∅ ou simplement { }, qui est une paire d'accolades ne contenant qu'une espace, pour représenter un ensemble qui ne contient rien. La notation ∅ a été introduite par André Weil, dans le cadre de l'institution de notations par le groupe Bourbaki. Von Neumann dans son article de 1923, qui est l'une des premières références qui l'aborde, le note O.
Ensemble de JuliaEn dynamique holomorphe, l'ensemble de Julia et l'ensemble de Fatou sont deux ensembles complémentaires l'un de l'autre, définis à partir du comportement d'une fonction (ou d'une application) holomorphe par composition itérée avec elle-même. Alors que l'ensemble de Fatou est l'ensemble des points en lesquels un faible changement du point de départ entraîne un faible changement sur la suite de l'itération (stabilité), l'ensemble de Julia est quant à lui, essentiellement caractérisé par le fait qu'une petite perturbation au départ se répercute en un changement radical de cette suite (chaos).
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.