Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Variété projectiveEn géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
AcétylureL'acétylure ou acétylénure ou éthynure ou encore dicarbure est un anion divalent de formule C22− ou (C≡C)2−. C'est la base conjuguée de l'éthyne, C2H2 ou H-C≡C-H, le prototype des alcynes qui se comporte comme un acide faible, c'est-à-dire qui peut perdre ses deux protons. Ce terme est aussi utilisé pour tout anion monovalent de la forme R-C≡C−, où R peut être tout substituant organique monovalent comme hydrogénoacétylure, H-C≡C− ou méthylacétylure, H3C-C≡C−.
Chow varietyIn mathematics, particularly in the field of algebraic geometry, a Chow variety is an algebraic variety whose points correspond to effective algebraic cycles of fixed dimension and degree on a given projective space. More precisely, the Chow variety is the fine moduli variety parametrizing all effective algebraic cycles of dimension and degree in . The Chow variety may be constructed via a Chow embedding into a sufficiently large projective space.
OrganosodiqueUn organosodique est un composé organométallique contenant une liaison carbone-sodium. Les applications de ce type de ce composé sont limitées, car en concurrence avec les organolithiens qui sont disponibles dans le commerce et dont la réactivité est plus facile à gérer. Le principal organosodique d'importance commerciale est le cyclopentadiénure de sodium. Le tétraphénylborate de sodium peut aussi être catégorisé dans les organosodiques car à l'état solide le sodium est lié aux groupes aryles.
Addition de MichaelL'addition de Michael ou réaction de Michael est une réaction qui permet la création de liaisons carbone-carbone, voire de liaisons carbone-soufre. Il s'agit de l'addition nucléophile d'un carbanion sur un composé carbonylé α,β-insaturé (aldéhyde, cétone et même ester α,β-insaturé, des nitriles et des amides α,β-insaturés pouvant aussi être utilisés). Elle appartient à la famille des additions nucléophiles conjuguées. Cette réaction doit son nom au chimiste américain Arthur Michael.
CarbanionIn organic chemistry, a carbanion is an anion in which carbon is negatively charged. Formally, a carbanion is the conjugate base of a carbon acid: where B stands for the base. The carbanions formed from deprotonation of alkanes (at an sp3 carbon), alkenes (at an sp2 carbon), arenes (at an sp2 carbon), and alkynes (at an sp carbon) are known as alkyl, alkenyl (vinyl), aryl, and alkynyl (acetylide) anions, respectively.
Réaction de GrignardUne réaction de Grignard est une réaction d'addition entre un halogénure organomagnésien et un composé organique porteur d'un groupe carbonyle, typiquement un aldéhyde ou une cétone, pour donner respectivement un alcool secondaire ou un alcool tertiaire Michael B. Smith, Jerry March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, , Wiley-Interscience, New-York, 2007. .
Variété de drapeaux généraliséeEn mathématiques, une variété de drapeaux généralisée ou tordue est un espace homogène d'un groupe (algébrique ou de Lie) qui généralise les espaces projectifs, les grassmanniennes, les quadriques projectives et l'espace de tous les drapeaux de signature donnée d'un espace vectoriel. La plupart des espaces homogènes de points ou de figures de la géométrie classique sont des variétés de drapeaux généralisées ou des espaces symétriques ou des variétés symétriques (analogues en géométrie algébrique des espaces symétriques), ou leur sont liés.
ProcessusLe mot processus vient du latin pro (au sens de « vers l'avant ») et de cessus, cedere (« aller, marcher ») ce qui signifie donc aller vers l'avant, avancer. Ce mot est également à l'origine du mot procédure qui désigne plutôt la méthode d'organisation, la stratégie du changement. En anatomie, un processus est une partie proéminente d'un organe ou un relief osseux aussi appelé apophyse. En écologie et biologie, les processus environnementaux, ou processus écosystémiques, sont des mécanismes ou des événements reliant les organismes à leur environnement.