Accessibilitéthumb|Minibus équipé d'une rampe d'accès pour personnes en fauteuil roulant. L’accessibilité est un terme initialement relatif au monde du handicap, des enfants ou des personnes âgées, puis étendu à l'ensemble des citoyens et utilisé pour désigner l'accès aux domaines suivants : physique, la liberté de déplacement dans l'espace ; éducatif, le droit à une scolarisation ; civique, le droit de vote ; culturel, pouvoir développer sa culture ; numérique, adaptation des systèmes numériques, dont les sites web, aux différents types de handicap, développement d'outils spécifiques tels loupe ou clavier visuel ; travail, pouvoir travailler en milieu ordinaire ; santé, avoir accès aux services de santé promotionnels, préventifs et curatifs.
Accessibilité numériqueL'accessibilité numérique est la mise à la disposition de tous les individus, quels que soient leur matériel ou logiciel, leur infrastructure réseau, leur langue maternelle, leur culture, leur localisation géographique, ou leurs aptitudes physiques ou mentales, des ressources numériques.
Accessibilité du webL'accessibilité du web est la problématique de l'accès aux contenus et services web par les personnes handicapées (déficients visuels, sourds, malentendants, etc.) et plus généralement par tous les utilisateurs, quels que soient leurs dispositifs d’accès (mobile, tablette, etc.) ou leurs conditions d’environnement (niveau sonore, éclairement). Les pratiques d'accessibilité cherchent à réduire ou supprimer les obstacles qui empêchent les utilisateurs d'accéder à des contenus ou d'interagir avec des services.
Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Outilthumb|Une boîte à outils en bois des années 1950. Un outil est un objet physique utilisé par un être vivant directement, ou par l'intermédiaire d'une machine, afin d'exercer une action le plus souvent mécanique, ou thermique, sur un élément d'environnement à traiter (matière brute, objet fini ou semi-fini, être vivant, etc). Il améliore l'efficacité des actions entreprises ou donne accès à des actions impossibles autrement. Beaucoup procurent un avantage mécanique en fonctionnant selon le principe d'une machine simple, comme la pince-monseigneur, qui exploite le principe du levier.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Géométrie synthétiqueLa géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique.
Universal quantificationIn mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.