Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Matrice nilpotenteUne matrice nilpotente est une matrice dont il existe une puissance égale à la matrice nulle. Elle correspond à la notion d'endomorphisme nilpotent sur un espace vectoriel de dimension finie. Cette notion facilite souvent le calcul matriciel. En effet, si le polynôme caractéristique d'une matrice est scindé (c'est-à-dire décomposable en produit de facteurs du premier degré, ce qui est le cas par exemple si le corps des coefficients est algébriquement clos), alors l'endomorphisme associé possède une décomposition de Dunford.
Sous-espace vectoriel engendréDans un espace vectoriel E, le sous-espace vectoriel engendré par une partie A de E est le plus petit sous-espace vectoriel de E contenant A. C'est aussi l'ensemble des combinaisons linéaires de vecteurs de A. Le sous-espace vectoriel engendré par une famille de vecteurs est le plus petit sous-espace contenant tous les vecteurs de cette famille. Une famille de vecteurs ou une partie est dite génératrice de E si le sous-espace qu'elle engendre est l'espace entier E.
Nil idealIn mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nil elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Famillevignette|Le repas familial (gravure sur bois, ). vignette|La famille de Philippe V d'Espagne (en 1723). vignette|Le portrait de famille est une des formes picturales répandues d'abord dans les familles nobles puis chez les familles bourgeoises (ici la famille Souchay vers 1805). vignette|Un peu de conversation, huile sur toile de Lilly Martin Spencer, vers 1851-1852 vignette|Peinture à l'huile de Jean de Francqueville intitulée . thumb|Portrait d'un chef camerounais et de sa famille (entre 1910 et 1930).
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
NilradicalEn algèbre, le nilradical d'un anneau commutatif est un idéal particulier de cet anneau. Soit A un anneau commutatif. Le nilradical de A est l'ensemble des éléments nilpotents de A. En d'autres termes, c'est l'idéal radical de l'idéal réduit à 0. En notant Nil(A) le nilradical de A, on a les énoncés suivants : Nil(A) est un idéal ; l'anneau quotient A/Nil(A) est réduit, c'est-à-dire qu'il n'a pas d'éléments nilpotents hormis 0 ; Nil(A) est inclus dans chaque idéal premier de A ; si s est un élément de A qui n'appartient pas à Nil(A), alors il existe un idéal premier auquel s n'appartient pas ; si A n'est pas l'anneau nul, Nil(A) est l'intersection de tous les idéaux premiers de A et même, de tous ses .
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Famille nucléairevignette|Un couple et des enfants : la famille nucléaire Une famille nucléaire est une forme de structure familiale fondée sur la notion de couple, soit un « ensemble de deux personnes liées par une volonté de former une communauté matérielle et affective, potentiellement concrétisée par une relation sexuelle conforme à la loi ». La famille nucléaire correspond donc à une famille regroupant deux adultes mariés ou non avec ou sans enfant. Cette structure familiale se distingue de la famille élargie et de la famille polygame.