Champ magnétique terrestreLe champ magnétique terrestre, aussi appelé bouclier terrestre, est un champ magnétique présent dans un vaste espace autour de la Terre (de manière non uniforme du fait de son interaction avec le vent solaire) ainsi que dans la croûte et le manteau. Il a son origine dans le noyau externe, par un mécanisme de dynamo auto-excitée. Dynamo terrestre Selon les études de John Tarduno de l'université de Rochester (États-Unis), la Terre possédait déjà un champ magnétique il y a 3,45 milliards d'années.
Quasi-particuleLes quasi-particules, ou quasiparticules, sont des entités conçues comme des particules et facilitant la description des systèmes de particules, particulièrement en physique de la matière condensée. Parmi les plus connues, on distingue les trous d'électrons qui peuvent être vus comme un "manque d'électron", et les phonons, qui décrivent des "paquets de vibration". Les solides sont formés de trois types de particules : les électrons, les protons et les neutrons.
Quantification de Landauvignette|Niveaux de Landau. En mécanique quantique, la quantification de Landau désigne la quantification des orbites cyclotroniques de particules chargées dans un champ magnétique. En conséquence, les particules chargées peuvent seulement occuper des orbitales d'énergie discrète (ou quantique), appelées « niveaux de Landau ». Dans ces niveaux, le nombre d'électrons admis est directement proportionnel au module du champ magnétique. La quantification de Landau influence directement les oscillations quantiques des propriétés électroniques des matériaux.
Groupe de WeylEn mathématiques, et en particulier dans la théorie des algèbres de Lie, le groupe de Weyl d'un système de racines , nommé ainsi en hommage à Hermann Weyl, est le sous-groupe du groupe d'isométries du système de racines engendré par les réflexions orthogonales par rapport aux hyperplans orthogonaux aux racines. Le système de racines de est constitué des sommets d'un hexagone régulier centré à l'origine. Le groupe complet des symétries de ce système de racines est par conséquent le groupe diédral d'ordre 12.
Oscillations de Rabithumb|Système à deux états d'énergie Les oscillations de Rabi sont des oscillations dans l'occupation des états d'un système à deux niveaux excité à une fréquence proche de la résonance. Initialement observé entre deux états de spin dans la résonance magnétique nucléaire, ce phénomène se produit également lorsqu'un champ électrique extérieur agit sur les transitions d'un système quantique – atome ou molécule – d'un état électronique de ce système à un autre. Le nom de Rabi a été donné en l'honneur de Isidor Isaac Rabi (1898 - 1988).
Formule des caractères de WeylEn théorie des représentations, la formule des caractères de Weyl est une description des caractères des représentations irréductibles des groupes de Lie compacts en fonction de leurs plus haut poids. Elle a été prouvée par Hermann Weyl. Il existe une formule étroitement liée pour le caractère d'une représentation irréductible d'une algèbre de Lie semi-simple. Dans l'approche de Weyl de la théorie des représentations des groupes de Lie compacts connexes, la preuve de la formule des caractères est une étape clé pour prouver que chaque élément entier dominant apparaît effectivement comme le plus haut poids d'une représentation irréductible.
Histoire de l'électricitévignette|La foudre, manifestation spectaculaire de l'électricité. L'électricité existe depuis les débuts de l'Univers. Son histoire vue par les hommes remonte aux débuts de l'humanité, car l'électricité est partout présente, elle est très discrète la majorité du temps mais se manifeste parfois de manière très spectaculaire et brutale : par exemple sous forme d'éclairs associés au tonnerre et à des destructions.
Transformée de Wigner-WeylLa transformée de Wigner – Weyl (ou transformée de Weyl – Wigner) établit une correspondance univoque entre deux formulations de la mécanique quantique : théorie abstraite de l'infiniment petit qui s'appuie sur des formalismes et des outils mathématiques divers, mais qui rendent compte des mêmes résultats et des mêmes propriétés dans leurs domaines communs d'application ; l'exemple historique bien établi est celui de la mécanique des matrices d'Heisenberg et celle décrite par l'équation de Schrödinger, dont
Tore maximalEn mathématiques, un tore maximal d'un groupe de Lie G est un sous-groupe de Lie commutatif, connexe et compact de G qui soit maximal pour ces propriétés. Les tores maximaux de G sont uniques à conjugaison près. De manière équivalente, c'est un de G, isomorphe à un tore, et maximal pour cette propriété. Le quotient du normalisateur N(T) d'un tore T par T est le groupe de Weyl associé. Tout groupe de Lie commutatif connexe est isomorphe à un quotient de Rn par un sous-réseau, donc à un tore Tn.
Quantum foundationsQuantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.