Corps parfaitEn mathématiques et plus particulièrement en algèbre dans le contexte de la théorie de Galois, un corps parfait est un corps commutatif dont toutes les extensions algébriques sont séparables. Les corps parfaits sont utiles pour la théorie de Galois, car les théorèmes fondateurs, comme le théorème de l'élément primitif ou le théorème fondamental de la théorie de Galois utilisent dans les hypothèses le fait que l'extension considérée est séparable.
Gettier problemThe Gettier problem, in the field of epistemology, is a landmark philosophical problem concerning the understanding of descriptive knowledge. Attributed to American philosopher Edmund Gettier, Gettier-type counterexamples (called "Gettier-cases") challenge the long-held justified true belief (JTB) account of knowledge. The JTB account holds that knowledge is equivalent to justified true belief; if all three conditions (justification, truth, and belief) are met of a given claim, then we have knowledge of that claim.
Courbe ROCLa fonction d’efficacité du récepteur, plus fréquemment désignée sous le terme « courbe ROC » (de l’anglais receiver operating characteristic, pour « caractéristique de fonctionnement du récepteur ») dite aussi caractéristique de performance (d'un test) ou courbe sensibilité/spécificité, est une mesure de la performance d'un classificateur binaire, c'est-à-dire d'un système qui a pour objectif de catégoriser des éléments en deux groupes distincts sur la base d'une ou plusieurs des caractéristiques de chacun
Definitions of knowledgeDefinitions of knowledge try to determine the essential features of knowledge. Closely related terms are conception of knowledge, theory of knowledge, and analysis of knowledge. Some general features of knowledge are widely accepted among philosophers, for example, that it constitutes a cognitive success or an epistemic contact with reality and that propositional knowledge involves true belief. Most definitions of knowledge in analytic philosophy focus on propositional knowledge or knowledge-that, as in knowing that Dave is at home, in contrast to knowledge-how (know-how) expressing practical competence.
Caractéristique d'un anneauEn algèbre, la caractéristique d'un anneau (unitaire) A est par définition l'ordre pour la loi additive de l'élément neutre de la loi multiplicative si cet ordre est fini ; si cet ordre est infini, la caractéristique de l'anneau est par définition zéro. On note, pour un anneau unitaire (A, +, ×), 0A l'élément neutre de « + » et 1A celui de « × ». La caractéristique d'un anneau A est donc le plus petit entier n > 0 tel que si un tel entier existe. Dans le cas contraire (autrement dit si 1A est d'ordre infini), la caractéristique est nulle.
False positives and false negativesA false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ).
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Surface implicitevignette|implicit surface torus (R=40, a=15) vignette|implicit surface of genus 2 150px|vignette|implicit non algebraic surface (wineglas) vignette|equipotential surface of 4 point charges 400px|vignette|metamorphoses between two implicit surfaces (torus and a constant distance product surface) 240px|vignette|approximation of three tori (parallel projection) 280px|vignette|PovRay-image (central projection) of an approximation of three tori 400px|vignette|PovRay-Bild: metamorphoses between a sphere and a cons
Algebraic surfaceIn mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two).