Hyperkähler manifoldIn differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).
Test de la dérivée premièreEn analyse réelle, le test de la dérivée première permet de déterminer l'allure d'une fonction dérivable en étudiant le signe de sa dérivée. Grâce à ce test, on peut déduire les extrema locaux, le sens de variation de f et les points d'inflexion « horizontaux », permettant ainsi de donner une allure du graphe de la fonction . Soit avec un intervalle ouvert réel (par exemple où et sont des réels). On suppose de plus que dérivable sur .
SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Curvature of Riemannian manifoldsIn mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Fonction régulière non analytiqueEn mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz.
Dérivée secondeLa dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
3-variétéEn mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
Série géométriquethumb|Preuve sans mots de l'égalité1/2 + 1/4 + 1/8 + 1/16 + ⋯ = 1 thumb|Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 :chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2× = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré. En mathématiques, la série géométrique est l'un des exemples de série numérique les plus simples.