Équivalence de catégoriesEn mathématiques, plus précisément en théorie des catégories, une équivalence de catégories est une relation qui établit que deux catégories sont "essentiellement les mêmes". C'est un foncteur entre les deux catégories, qui prend compte formellement du fait que ces catégories relèvent d'une même structure : on dit alors que les catégories sont équivalentes. À la différence de la notion d'isomorphisme de catégories, la notion d'équivalence est moins rigide, plus pratique et plus courante.
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Variété (algèbre)En algèbre universelle, une variété est une classe équationnelle, c'est-à-dire une classe K non vide de structures algébriques de même signature qui satisfont un ensemble d'identités (appelé axiomatisation équationnelle de la classe). Un monoïde est un ensemble E muni d'une loi interne * associative et d'un élément neutre. Ainsi, pour tous éléments x, y, z d'un monoïde, les équations suivantes sont vérifiées : (x * y) * z = x * (y * z) x * e = x e * x = x De plus, ces trois équations caractérisent la notion de monoïde.
Superalgèbre de LieUne superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une Z-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions.
Opposite categoryIn , a branch of mathematics, the opposite category or dual category Cop of a given C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, . An example comes from reversing the direction of inequalities in a partial order. So if X is a set and ≤ a partial order relation, we can define a new partial order relation ≤op by x ≤op y if and only if y ≤ x.
Supergroup (physics)The concept of supergroup is a generalization of that of group. In other words, every supergroup carries a natural group structure, but there may be more than one way to structure a given group as a supergroup. A supergroup is like a Lie group in that there is a well defined notion of smooth function defined on them. However the functions may have even and odd parts. Moreover, a supergroup has a super Lie algebra which plays a role similar to that of a Lie algebra for Lie groups in that they determine most of the representation theory and which is the starting point for classification.
Timeline of category theory and related mathematicsThis is a timeline of category theory and related mathematics. Its scope ("related mathematics") is taken as: of abstract algebraic structures including representation theory and universal algebra; Homological algebra; Homotopical algebra; Topology using categories, including algebraic topology, categorical topology, quantum topology, low-dimensional topology; Categorical logic and set theory in the categorical context such as algebraic set theory; Foundations of mathematics building on categories, for instance topos theory; Abstract geometry, including algebraic geometry, categorical noncommutative geometry, etc.
Axiome de l'infiniEn mathématiques, dans le domaine de la théorie des ensembles, l'axiome de l'infini est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, qui assure l'existence d'un ensemble infini, plus précisément d'un ensemble qui contient une représentation des entiers naturels. Il apparait dans la première axiomatisation de la théorie des ensembles, publiée par Ernst Zermelo en 1908, sous une forme cependant un peu différente de celle exposée ci-dessous.
Théorème fondamental de la théorie de GaloisEn mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H.
Point à l'infiniEn mathématiques, et plus particulièrement en géométrie et en topologie, on appelle point à l'infini un objet adjoint à l'espace que l'on veut étudier pour pouvoir plus commodément y définir certaines notions de limites « à l'infini », ou encore pour obtenir des énoncés plus uniformes, tels que « deux droites se coupent toujours en un point, situé à l'infini si elles sont parallèles ». La notion de point à l'infini apparait au dans le cadre du développement des méthodes de la perspective conique, avec l'invention de la « costruzione abbreviata » d'Alberti.