In mathematics, a topological ring is a ring that is also a topological space such that both the addition and the multiplication are continuous as maps: where carries the product topology. That means is an additive topological group and a multiplicative topological semigroup. Topological rings are fundamentally related to topological fields and arise naturally while studying them, since for example completion of a topological field may be a topological ring which is not a field. The group of units of a topological ring is a topological group when endowed with the topology coming from the embedding of into the product as However, if the unit group is endowed with the subspace topology as a subspace of it may not be a topological group, because inversion on need not be continuous with respect to the subspace topology. An example of this situation is the adele ring of a global field; its unit group, called the idele group, is not a topological group in the subspace topology. If inversion on is continuous in the subspace topology of then these two topologies on are the same. If one does not require a ring to have a unit, then one has to add the requirement of continuity of the additive inverse, or equivalently, to define the topological ring as a ring that is a topological group (for ) in which multiplication is continuous, too. Topological rings occur in mathematical analysis, for example as rings of continuous real-valued functions on some topological space (where the topology is given by pointwise convergence), or as rings of continuous linear operators on some normed vector space; all Banach algebras are topological rings. The rational, real, complex and -adic numbers are also topological rings (even topological fields, see below) with their standard topologies. In the plane, split-complex numbers and dual numbers form alternative topological rings. See hypercomplex numbers for other low-dimensional examples.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.