Terme (logique)Un terme est une expression de base du calcul des prédicats, de l'algèbre, notamment de l'algèbre universelle, et du calcul formel, des systèmes de réécriture et de l'unification. C'est l'objet produit par une analyse syntaxique. Sa principale caractéristique est d'être homogène (il n'y a que des opérations de base et pas d'opérations logiques) et de décrire l'agencement des opérations de base. Un terme est parfois appelé une formule du premier ordre.
Kleinian groupIn mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3.
Nombre négatifvignette|Thermomètre indiquant une température négative en degrés Fahrenheit. Un nombre négatif est un nombre réel qui est inférieur à zéro, comme −3 ou −π . La première apparition connue des nombres négatifs est dans Les Neuf Chapitres sur l'art mathématique (Jiǔzhāng Suànshù), dont les versions qui nous sont parvenues datent du début de la dynastie Han (), sans qu'on puisse dater les versions originales, sans doute plus anciennes. Les Neuf Chapitres utilise des bâtons de numération rouges pour les nombres positifs et des noirs pour les négatifs.
Théorème de DandelinEn mathématiques, le théorème de Dandelin, ou théorème de Dandelin-Quetelet ou théorème belge sur la section conique, est un théorème portant sur les coniques. Le théorème de Dandelin énonce que, si une ellipse ou une hyperbole est obtenue comme section conique d'un cône de révolution par un plan, alors : il existe deux sphères à la fois tangentes au cône et au plan de la conique (de part et d'autre de ce plan pour l'ellipse et d'un même côté de ce plan pour l'hyperbole) ; les points de tangence des deux sphères au plan sont les foyers de la conique ; les directrices de la conique sont les intersections du plan de la conique avec les plans contenant les cercles de tangences des sphères avec le cône.
BiquaternionEn mathématiques, un biquaternion (ou quaternion complexe) est un élément de l'algèbre des quaternions sur les nombres complexes. Le concept d'un biquaternion fut mentionné la première fois par William Rowan Hamilton au . William Kingdon Clifford utilisa le même nom à propos d'une algèbre différente. biquaternion de Clifford Il y a aussi une autre notion de biquaternions, distincte : une algèbre de biquaternions sur un corps commutatif K est une algèbre qui est isomorphe au produit tensoriel de deux algèbres de quaternions sur K (sa dimension est 16 sur K, et non pas 8 sur R).
Théorie des domainesLa théorie des domaines est une branche des mathématiques dont le principal champ d'application se trouve en informatique théorique. Cette partie de la théorie des ensembles ordonnés a été introduite par Dana Scott pendant les années 1960, afin de fournir le cadre théorique nécessaire à la définition d'une sémantique dénotationnelle du lambda-calcul. Les domaines sont des ensembles partiellement ordonnés.
Higher local fieldIn mathematics, a higher (-dimensional) local field is an important example of a complete discrete valuation field. Such fields are also sometimes called multi-dimensional local fields. On the usual local fields (typically completions of number fields or the quotient fields of local rings of algebraic curves) there is a unique surjective discrete valuation (of rank 1) associated to a choice of a local parameter of the fields, unless they are archimedean local fields such as the real numbers and complex numbers.
Quaternionvignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
Continuité de ScottEn mathématiques pour l'informatique, étant donné deux ensembles partiellement ordonnés P et Q, une fonction f : P → Q entre eux est Scott-continue (du nom du mathématicien Dana Scott) si elle préserve tous les suprema dirigés, c'est-à-dire que pour chaque sous-ensemble orienté D de P avec supremum dans P, son a un supremum dans Q, et ce supremum est l'image du supremum de D, c'est-à-dire , où est la jointure dirigée.
Church encodingIn mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way. Terms that are usually considered primitive in other notations (such as integers, booleans, pairs, lists, and tagged unions) are mapped to higher-order functions under Church encoding.