Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Dispositif médicalUn dispositif médical (DM), ou instrument médical au Canada, est une catégorie réglementaire de produits de santé dont les frontières sont différentes selon les pays. À ce titre, il est difficile d’établir une définition globale. Toutefois, la plupart des législations internationales se regroupent autour d’un certain nombre de critères communs : il peut s'agir d'un instrument, d'un appareil, d'un équipement, d'un réactif, d'une matière ou de tout autre article ; il est destiné à être utilisé à des fins médicales (diagnostic, prévention, traitement d'une maladie, d'une blessure ou d'un handicap, maîtrise de la conception.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Anneau topologiqueEn mathématiques, un anneau topologique est un anneau muni d'une topologie compatible avec les opérations internes, c'est-à-dire telle que l'addition, l'application opposée et la multiplication soient continues. Un corps topologique est un corps muni d'une topologie qui rend continues l'addition, la multiplication et l'application inverse. Ces structures étendent la notion de groupe topologique. Tous les corps de nombres usuels (rationnels, réels, complexes, p-adiques) ont une ou plusieurs topologies classiques qui en font des corps topologiques.
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
Cas pathologiquedroite|vignette|La fonction de Weierstrass est une fonction continue nulle part dérivable. En mathématiques, un objet pathologique est un objet qui s'oppose à l'intuition que l'on a de la situation générale. Par exemple, la fonction de Weierstrass, qui est une fonction continue nulle part dérivable, peut être considérée comme pathologique car elle s'oppose à l'intuition que l'on a des fonctions continues. Ainsi, Henri Poincaré écrit à leur sujet : Objet exceptionnel Position générale Catégorie:Vocabulaire d
Projection orthogonaleEn mathématiques, la projection orthogonale est une transformation de l'espace, une application linéaire : en géométrie plane, c'est une projection telle que les deux droites — la droite sur laquelle on projette et la direction de projection — sont perpendiculaires ; en géométrie dans l'espace, c'est une projection telle que la droite et le plan — quels que soient leurs rôles respectifs — sont perpendiculaires.
Projection orthographiquevignette|Projection orthographique centrée sur la France. Une projection orthographique est une projection cartographique azimutale. C'est une projection de perspective par laquelle une sphère est projetée sur un plan tangent. Le point de perspective est à une distance infinie. Un hémisphère du globe est perçu comme s'il était observé depuis l'espace. Les aires et formes locales ne sont pas conservées. Les anciens Grecs l'appelaient analemme, du nom d'un traité de Ptolémée.