MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Générateur MHDUn générateur MHD (magnétohydrodynamique) est un convertisseur MHD, qui transforme l'énergie cinétique d'un fluide conducteur directement en électricité. Le principe de base est fondamentalement le même que pour n'importe quel générateur électrique. Les deux types de générateur utilisent tous deux un inducteur (électro-aimant) générant un champ magnétique dans un induit. Dans le cas d'un générateur conventionnel, cet induit est solide : c'est une bobine constituée d'un enroulement de fil métallique.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Reconnexion magnétiquedroite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Théorème d'AlfvénEn magnétohydrodynamique, le théorème d'Alfvén établit que dans un fluide dont la conductivité électrique est infinie, les lignes de champ magnétique sont "gelées" à l'intérieur de ce fluide et qu'elles sont donc contraintes de se déplacer avec celui-ci. Le physicien Hannes Alfvén fit pour la première fois part de cette idée en 1942. Il est à noter que dans la plupart des milieux étudiés en astrophysique, aussi bien que dans les conditions d'étude des plasmas en laboratoire, du fait que la conductivité électrique n'est pas infinie, les lignes de champ magnétique ne sont pas idéalement piégées à l'intérieur des fluides.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
Magnetic topologyIn plasma physics, the magnetic topology of a plasma is the structure and linkage of its magnetic field. The magnetic topology of a plasma can be changed through magnetic diffusion and reconnection. In the limit of a large magnetic Reynolds number, however, diffusion and reconnection of the magnetic field cannot occur, and the magnetic topology is preserved.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.