Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Inégalité (mathématiques)En mathématiques, une inégalité est une formule reliant deux expressions numériques avec un symbole de comparaison. Une inégalité stricte compare nécessairement deux valeurs différentes tandis qu’une inégalité large reste valable en cas d’égalité. Contrairement à une interprétation étymologique, la négation d’une égalité (avec le symbole ≠) n’est pas considérée comme une inégalité et se traite différemment. Les inégalités permettent d’encadrer ou de distinguer des valeurs réelles, de préciser une approximation, de justifier le comportement asymptotique d’une série ou d’une intégrale.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Famille exponentielleEn théorie des probabilités et en statistique, une famille exponentielle est une classe de lois de probabilité dont la forme générale est donnée par : où est la variable aléatoire, est un paramètre et est son paramètre naturel. Les familles exponentielles présentent certaines propriétés algébriques et inférentielles remarquables. La caractérisation d'une loi en famille exponentielle permet de reformuler la loi à l'aide de ce que l'on appelle des paramètres naturels.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Inégalité triangulaireEn géométrie, l'inégalité triangulaire est le fait que, dans un triangle, la longueur d'un côté est inférieure à la somme des longueurs des deux autres côtés. Cette inégalité est relativement intuitive. Dans la vie ordinaire, comme dans la géométrie euclidienne, cela se traduit par le fait que la ligne droite est le plus court chemin : le plus court chemin d'un point A à un point B est d'y aller tout droit, sans passer par un troisième point C qui ne serait pas sur la ligne droite.
Analyse en composantes indépendantesL'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.