Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.
Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Géométrie symplectiqueLa géométrie symplectique est un domaine de la recherche mathématique, s'intéressant à l'origine à une formulation mathématique naturelle de la mécanique classique et développé avec une notion d'entrelacement entre la géométrie différentielle et les systèmes dynamiques, avec des applications en géométrie algébrique, en géométrie riemannienne et en géométrie de contact. Formellement, elle consiste en l'étude des 2-formes différentielles fermées non dégénérées — appelées formes symplectiques — sur les variétés différentielles.
Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
Spectacle vivantLe spectacle vivant se caractérise par la coprésence d'actants (ceux qui donnent à voir et à entendre) et d'un public (ceux qui ont accepté de voir et d'entendre). En cela, le spectacle vivant désigne de nombreux modes d'expression artistique, de la représentation à l'improvisation : le théâtre, la danse, les arts du cirque, les arts de la rue, les arts de la marionnette, l'opéra, le spectacle de rue et la musique live.
NuageUn nuage est en météorologie une masse visible constituée initialement d'une grande quantité de gouttelettes d’eau (parfois de cristaux de glace associés à des aérosols chimiques ou des minéraux) en suspension dans l’atmosphère au-dessus de la surface d'une planète. L’aspect d'un nuage dépend de sa nature, de sa dimension, de la lumière qu’il reçoit, ainsi que du nombre et de la répartition des particules qui le constituent. Les gouttelettes d’eau d’un nuage proviennent de la condensation de la vapeur d'eau contenue dans l’air.
Physique des nuagesLa physique des nuages est l’étude des processus physiques et dynamiques de formation des nuages et des précipitations qui les accompagnent. Les nuages chauds sont formés de microscopiques gouttelettes et les froids de cristaux de glace ou parfois des deux types. Leur formation est contrôlée par la disponibilité de vapeur d'eau dans l’air et des mouvements verticaux dans celui-ci. Le mouvement vertical peut être induit par une ascendance à grande échelle, comme dans le cas des dépressions synoptiques, ou à méso-échelle comme dans le cas des orages.