Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Ensemble maigreEn topologie, dans le contexte des espaces de Baire, un ensemble maigre (on dit aussi de première catégorie) est une partie d'un espace de Baire qui, en un sens technique, peut être considérée comme de taille infime. Un ensemble comaigre est le complémentaire d'un ensemble maigre. Une partie qui n'est pas maigre est dite de deuxième catégorie. Un sous-ensemble d'un espace topologique E est dit maigre lorsqu'il est contenu dans une réunion dénombrable de fermés de E qui sont tous d'intérieur vide.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Technique d'affichageLa technique d'affichage est le moyen de présentation d'une information au moyen de divers phénomènes physiques ou chimiques. Les premiers afficheurs furent statiques (pierres, affiches, affichage libre, peinture). Le premier afficheur dynamique est peut-être le cadran solaire. Le développement de la mécanique permit l'affichage mécanique de l'heure (horlogerie). La commande par câble permit l'affichage à distance pour la signalisation des chemins de fer.
Stereoscopic video gameA stereoscopic video game (also S-3D video game) is a video game which uses stereoscopic technologies to create depth perception for the player by any form of stereo display. Such games should not to be confused with video games that use 3D game graphics on a mono screen, which give the illusion of depth only by monocular cues but lack binocular depth information. Stereoscopic video games have been available for several years for PCs through the Nvidia 3D Vision and other platforms including AMD HD3D, DDD TriDef that use compatible hardware and active shutter 3D glasses.
Ensemble de CantorEn mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Ensemble négligeablevignette|Le triangle de Sierpiński est un exemple d'ensemble nul de points dans R 2 \mathbb {R} ^{2}. En théorie de la mesure, dans un espace mesuré, un ensemble négligeable est un ensemble de mesure nulle ou une partie d'un tel ensemble. La définition peut dépendre de la mesure choisie : deux mesures sur un même espace mesurable qui ont les mêmes ensembles de mesure nulle sont dites équivalentes. À un niveau élémentaire, il est possible d'aborder la notion d'ensemble négligeable pour un certain nombre d'espaces (dont la droite réelle) sans avoir à introduire une mesure.
Ordre denseLa notion dordre dense est une notion de mathématiques, en lien avec la notion de relation d'ordre. Un ensemble ordonné (E, ≤) est dit dense en lui-même, ou plus simplement dense, si, pour tout couple (x, y) d'éléments de E tels que x < y il existe un élément z de E tel que x < z < y. Par exemple, tout corps totalement ordonné est dense en lui-même alors que l'anneau Z des entiers relatifs ne l'est pas.
Ensemble GδEn mathématiques et, en particulier, en topologie, un ensemble Gδ (lire « G delta ») est une intersection dénombrable d'ensembles ouverts. La notation introduite par Felix Hausdorff vient de l'allemand, le G désignant un ouvert (Gebiet) et le δ désignant une intersection (Durchschnitt). La notation Gδ est équivalente à celle de utilisée dans la hiérarchie de Borel. L'intersection dénombrable d'ensembles Gδ est un ensemble Gδ et l'union finie d'ensembles Gδ est un ensemble Gδ. Le complémentaire d'un ensemble Gδ est un ensemble Fσ.