Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Nœud (lien)vignette|upright=1.4|Nœuds dans "Nordisk familjebok", 1911: 1. Épissure 2. Nœud de tire-veille 3. Nœud en queue de cochon 4. Wall and crown knot 5. Nœud de ride 6. Nœud de hauban 7. Bonnet turc 8. Demi-nœud, Nœud en huit 9. Nœud plat 10. Nœud de grappin vignette|upright=1.4|Nœuds dans "Le Larousse pour tous", 1909. Un nœud est l'enlacement ou l'entrecroisement d'une ou de plusieurs cordes, ou tout autres objets flexibles et de forme filaire (comme un fil, une sangle, un câble, un ruban).
Nœud (mathématiques)En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Crossing number (knot theory)In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant. By way of example, the unknot has crossing number zero, the trefoil knot three and the figure-eight knot four. There are no other knots with a crossing number this low, and just two knots have crossing number five, but the number of knots with a particular crossing number increases rapidly as the crossing number increases.
Invariant de nœudsthumb|Les deux nœuds sont équivalents, leur invariant est donc identique. En théorie des nœuds, un invariant de nœuds est une quantité définie pour chaque nœud qui est la même pour tous les nœuds équivalents. On parlera d'équivalence lorsqu'on peut passer d'un nœud à un autre par un ensemble de mouvements de Reidemeister. Ces invariants topologiques peuvent être de tout type : des booléens, des scalaires, des polynômes (polynôme d'Alexander, le polynôme de Jones, le ) ou encore le groupe fondamental du complément d'un nœud, les de Vassiliev et l'.
Deformation (engineering)In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
Polynôme d'AlexanderEn mathématiques, et plus précisément en théorie des nœuds, le polynôme d'Alexander est un invariant de nœuds qui associe un polynôme à coefficients entiers à chaque type de nœud. C'est le premier découvert ; il l'a été par James Waddell Alexander II, en 1923. En 1969, John Conway en montra une version, appelée à présent le polynôme d'Alexander-Conway, pouvant être calculé à l'aide d'une « » (skein relation), mais l'importance n'en fut pas comprise avant la découverte du polynôme de Jones en 1984.
Déformation plastiqueLa théorie de la plasticité traite des déformations irréversibles indépendantes du temps, elle est basée sur des mécanismes physiques intervenant dans les métaux et alliages mettant en jeu des mouvements de dislocations (un réarrangement de la position relative des atomes, ou plus généralement des éléments constitutifs du matériau) dans un réseau cristallin sans influence de phénomènes visqueux ni présence de décohésion endommageant la matière. Une des caractéristiques de la plasticité est qu’elle n’apparaît qu’une fois un seuil de charge atteint.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Braid groupIn mathematics, the braid group on n strands (denoted ), also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids (see ). Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation (see ); and in monodromy invariants of algebraic geometry.